Contrasting the Implicit Method in Incoherent Lagrangian and the Correction Map Method in Hamiltonian
Abstract
:1. Introduction
2. PN Lagrangian and Hamiltonian in Compact Binary
3. Phase-Space Expansion Method with a Multi-Factors Correction Map
4. Numerical Simulation
5. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Fourth-order implicit symplectic integrator | |
Correction map method for 1PN Hamiltonian | |
Correction map method for 2PN Hamiltonian |
References
- Wu, X.; Wang, Y.; Sun, W.; Liu, F.Y.; Han, W.B. Explicit Symplectic Methods in Black Hole Spacetimes. Astrophys. J. 2022, 940, 166. [Google Scholar] [CrossRef]
- Zhou, N.Y.; Zhang, H.X.; Liu, W.F.; Wu, X. A Note on the Construction of Explicit Symplectic Integrators for Schwarzschild Spacetimes. Astrophys. J. 2022, 927, 160, Erratum in Astrophys. J. 2023, 947, 94. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, W.; Liu, F.Y.; Wu, X. Construction of Explicit Symplectic Integrators in General Relativity. I. Schwarzschild Black Holes. Astrophys. J. 2021, 907, 66. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, W.; Liu, F.Y.; Wu, X. Construction of Explicit Symplectic Integrators in General Relativity. II. Reissner-Nordström Black Holes. Astrophys. J. 2021, 909, 22. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Y.; Sun, W.; Liu, F.Y. Construction of Explicit Symplectic Integrators in General Relativity. IV. Kerr Black Holes. Astrophys. J. 2021, 914, 63. [Google Scholar] [CrossRef]
- Sun, W.; Wang, Y.; Liu, F.Y.; Wu, X. Applying explicit symplectic integrator to study chaos of charged particles around magnetized Kerr black hole. Eur. Phys. J. C 2021, 81, 785. [Google Scholar] [CrossRef]
- Pan, G.F.; Wu, X.; Liang, E.W. Extended phase-space symplectic-like integrators for coherent post-Newtonian Euler–Lagrange equations. Phys. Rev. D 2021, 104, 044055. [Google Scholar] [CrossRef]
- Blanchet, L.; Iyer, B.R. Third post-Newtonian dynamics of compact binaries: Equations of motion in the centre-of-mass frame. Class. Quantum Gravity 2003, 20, 755. [Google Scholar] [CrossRef]
- Tanay, S.; Stein, L.C.; Ghersi, J.T.G. Integrability of eccentric, spinning black hole binaries up to second post-Newtonian order. Phys. Rev. D 2021, 103, 064066. [Google Scholar] [CrossRef]
- Arun, K.G.; Blanchet, L.; Iyer, B.; Qusailah, M.S. Inspiralling compact binaries in quasi-elliptical orbits: The complete third post-Newtonian energy flux. Phys. Rev. D 2008, 77, 064035. [Google Scholar] [CrossRef] [Green Version]
- Tessmer, M.; Schäfer, G. Eccentric motion of spinning compact binaries. Phys. Rev. D 2014, 89, 104055. [Google Scholar] [CrossRef] [Green Version]
- Hinder, I.; Kidder, L.; Pfeiffer, P. Eccentric binary black hole inspiral-merger-ringdown gravitational waveform model from numerical relativity and post-Newtonian theory. Phys. Rev. D 2018, 98, 044015. [Google Scholar] [CrossRef] [Green Version]
- Chattaraj, A.; RoyChowdhury, T.; Divyajyoti; Mishra, C.; Gupta, A. High accuracy post-Newtonian and numerical relativity comparisons involving higher modes for eccentric binary black holes and a dominant mode eccentric inspiral-merger-ringdown model. Phys. Rev. D 2022, 106, 124008. [Google Scholar] [CrossRef]
- Chowdhury, S.R.; Khlopov, M. An eccentric binary black hole in post-Newtonian theory. Symmetry 2022, 14, 510. [Google Scholar] [CrossRef]
- Wu, X.; Mei, L.; Huang, G.; Liu, S. Analytical and numerical studies on differences between lagrangian and hamiltonian approaches at the same post-newtonian order. Phys. Rev. D 2015, 91, 024042. [Google Scholar] [CrossRef]
- Wu, X.; Huang, G. Ruling out chaos in comparable mass compact binary systems with one body spinning. Mon. Not. R. Astron. Soc 2015, 452, 3167–3178. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Wu, X.; Ma, D.Z. Second post-Newtonian Lagrangian dynamics of spinning compact binaries. Eur. Phys. J. C 2016, 76, 488. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Wang, Y.; Deng, C.; Wu, X. Coherent post-Newtonian Lagrangian equations of motion. Eur. Phys. J. Plus 2021, 135, 390. [Google Scholar] [CrossRef]
- Li, D.; Wu, X.; Liang, E. Effect of the Quadrupole–Monopole Interaction on Chaos in Compact Binaries. Ann. Der Phys. 2019, 531, 1900136. [Google Scholar] [CrossRef]
- Li, D.; Wu, X.; Liang, E. Figure-eight orbits in three post-Newtonian formulations of triple black holes. Phys. Rev. D 2021, 104, 044039. [Google Scholar] [CrossRef]
- Zhong, S.Y.; Wu, X. Manifold corrections on spinning compact binaries. Phys. Rev. D 2010, 81, 104037. [Google Scholar] [CrossRef]
- Tsang, D.; Galley, C.R.; Stein, L.C. “Slimplectic” integrators: Variational integrators for general nonconservative systems. Astrophys. J. Lett. 2015, 809, L9. [Google Scholar] [CrossRef] [Green Version]
- Lubich, C.; Walther, B.; Bruegmann, B. Symplectic integration of post-Newtonian equations of motion with spin. Phys. Rev. D 2010, 81, 104025. [Google Scholar] [CrossRef] [Green Version]
- Zhong, S.Y.; Wu, X.; Liu, S.Q.; Deng, X.F. Global symplectic structure-preserving integrators for spinning compact binaries. Phys. Rev. D 2010, 82, 124040. [Google Scholar] [CrossRef]
- Seyrich, J. Gauss collocation methods for efficient structure preserving integration of post-Newtonian equations of motio. Phys. Rev. D 2013, 87, 084064. [Google Scholar] [CrossRef] [Green Version]
- Pihajoki, P. Explicit methods in extended phase space for inseparable Hamiltonian problems. Celest. Mech. Dyn. Astron. 2015, 121, 211–231. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Wu, X. Modification of logarithmic Hamiltonians and application of explicit symplectic-like integrators. Mon. Not. R. Astron. Soc 2017, 469, 3031–3041. [Google Scholar] [CrossRef]
- Li, D.; Wu, X. Chaotic motion of neutral and charged particles in a magnetized Ernst-Schwarzschild spacetime. Eur. Phys. J. Plus 2019, 134, 96. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Wu, X.; Huang, G.; Liu, F.Y. Higher order explicit symmetric integrators for inseparable forms of coordinates and momenta. Mon. Not. R. Astron. Soc 2016, 459, 1968. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Wu, X.; Huang, G.; Liu, F.Y. Explicit symplectic-like integrators with midpoint permutations for spinning compact binaries. Astrophys. J. 2017, 834, 64. [Google Scholar] [CrossRef]
- Luo, J.; Lin, W.P.; Yang, L. Explicit symplectic-like integration with corrected map for inseparable Hamiltonian. Mon. Not. R. Astron. Soc 2021, 501, 1511. [Google Scholar] [CrossRef]
- Luo, J.; Feng, J.; Zhang, H.H.; Lin, W.P. Performance of different correction maps in the extended phase-space method for spinning compact binaries. Mon. Not. R. Astron. Soc 2022, 518, 6132. [Google Scholar] [CrossRef]
- Yoshida, H. Construction of higher order symplectic integrators. Phys. Lett. A 1990, 150, 262. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, J.; Feng, J.; Zhang, H.-H.; Lin, W. Contrasting the Implicit Method in Incoherent Lagrangian and the Correction Map Method in Hamiltonian. Symmetry 2023, 15, 1401. https://doi.org/10.3390/sym15071401
Luo J, Feng J, Zhang H-H, Lin W. Contrasting the Implicit Method in Incoherent Lagrangian and the Correction Map Method in Hamiltonian. Symmetry. 2023; 15(7):1401. https://doi.org/10.3390/sym15071401
Chicago/Turabian StyleLuo, Junjie, Jie Feng, Hong-Hao Zhang, and Weipeng Lin. 2023. "Contrasting the Implicit Method in Incoherent Lagrangian and the Correction Map Method in Hamiltonian" Symmetry 15, no. 7: 1401. https://doi.org/10.3390/sym15071401
APA StyleLuo, J., Feng, J., Zhang, H. -H., & Lin, W. (2023). Contrasting the Implicit Method in Incoherent Lagrangian and the Correction Map Method in Hamiltonian. Symmetry, 15(7), 1401. https://doi.org/10.3390/sym15071401