Islands in Generalized Dilaton Theories
Abstract
:1. Introduction
2. Two-Dimensional Generalized Dilaton Gravity Theory
3. General Results
3.1. Setting up the Calculation
3.2. Entanglement Entropy without Islands
3.3. Entanglement Entropy with Islands
4. Examples
4.1. CGHS Model
4.1.1. The Geometry
4.1.2. The Derivation of the Island
5. Liouville Gravity
5.1. The Geometry
5.2. The Derivation of the Island
5.3. The Other Black Geometry
6. Ab-Family
7. Reissner–Nordstrom
7.1. Other Charged Dilaton Black Hole I
7.2. Other Charged Dilaton Black Hole II
8. Conclusions and Discussion
- Our general analysis should be simply generalized to the asymptotically AdS black holes in GDT by gluing a flat bath. This is because, after gluing the flat bath, the whole spacetime is similar to the asymptotically flat black hole, and cut-off surface can be chosen to be the boundary of the AdS space.
- In this work, we only consider the classical solutions of GDT. It is also possible to include the quantum effect that comes from the conformal anomaly, following, for example, [21].
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Review of 2D GDT
Appendix A.1. Conventions
Appendix A.2. The First-Order Formalism of GDT
Appendix A.3. Back to Second-Order Formalism
References
- Bousso, R.; Dong, X.; Engelhardt, N.; Faulkner, T.; Hartman, T.; Shenker, S.H.; Stanford, D. Snowmass White Paper: Quantum Aspects of Black Holes and the Emergence of Spacetime. arXiv 2022, arXiv:2201.03096. [Google Scholar]
- Hawking, S.W. Particle Creation by Black Holes. Commun. Math. Phys. 1975, 43, 199–220, Erratum in Commun. Math. Phys. 1976, 46, 206. [Google Scholar] [CrossRef]
- Hawking, S.W. Breakdown of Predictability in Gravitational Collapse. Phys. Rev. D 1976, 14, 2460–2473. [Google Scholar] [CrossRef]
- Page, D.N. Information in black hole radiation. Phys. Rev. Lett. 1993, 71, 3743–3746. [Google Scholar] [CrossRef] [Green Version]
- Penington, G. Entanglement Wedge Reconstruction and the Information Paradox. J. High Energy Phys. 2020, 9, 2. [Google Scholar] [CrossRef]
- Almheiri, A.; Engelhardt, N.; Marolf, D.; Maxfield, H. The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole. J. High Energy Phys. 2019, 12, 63. [Google Scholar] [CrossRef] [Green Version]
- Almheiri, A.; Mahajan, R.; Maldacena, J.; Zhao, Y. The Page curve of Hawking radiation from semiclassical geometry. J. High Energy Phys. 2020, 3, 149. [Google Scholar] [CrossRef] [Green Version]
- Geng, H.; Karch, A.; Perez-Pardavila, C.; Raju, S.; Randall, L.; Riojas, M.; Shashi, S. Inconsistency of islands in theories with long-range gravity. J. High Energy Phys. 2022, 1, 182. [Google Scholar] [CrossRef]
- Engelhardt, N.; Wall, A.C. Quantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical Regime. J. High Energy Phys. 2015, 1, 073. [Google Scholar] [CrossRef] [Green Version]
- Penington, G.; Shenker, S.H.; Stanford, D.; Yang, Z. Replica wormholes and the black hole interior. J. High Energy Phys. 2022, 3, 205. [Google Scholar] [CrossRef]
- Almheiri, A.; Hartman, T.; Maldacena, J.; Shaghoulian, E.; Tajdini, A. Replica Wormholes and the Entropy of Hawking Radiation. J. High Energy Phys. 2020, 5, 13. [Google Scholar] [CrossRef]
- Sully, J.; Raamsdonk, M.V.; Wakeham, D. BCFT entanglement entropy at large central charge and the black hole interior. J. High Energy Phys. 2021, 3, 167. [Google Scholar] [CrossRef]
- Chen, H.Z.; Myers, R.C.; Neuenfeld, D.; Reyes, I.A.; Sandor, J. Quantum Extremal Islands Made Easy, Part I: Entanglement on the Brane. J. High Energy Phys. 2020, 10, 166. [Google Scholar] [CrossRef]
- Chen, H.Z.; Myers, R.C.; Neuenfeld, D.; Reyes, I.A.; Sandor, J. Quantum Extremal Islands Made Easy, Part II: Black Holes on the Brane. J. High Energy Phys. 2020, 12, 25. [Google Scholar] [CrossRef]
- Suzuki, K.; Takayanagi, T. BCFT and Islands in Two Dimensions. arXiv 2022, arXiv:2202.08462. [Google Scholar] [CrossRef]
- Krishnan, C. Critical Islands. J. High Energy Phys. 2021, 1, 179. [Google Scholar] [CrossRef]
- Caceres, E.; Kundu, A.; Patra, A.K.; Shashi, S. Warped information and entanglement islands in AdS/WCFT. J. High Energy Phys. 2021, 7, 4. [Google Scholar] [CrossRef]
- Geng, H.; Nomura, Y.; Sun, H.Y. Information paradox and its resolution in de Sitter holography. Phys. Rev. D 2021, 103, 126004. [Google Scholar] [CrossRef]
- Geng, H.; Lüst, S.; Mishra, R.K.; Wakeham, D. Holographic BCFTs and Communicating Black Holes. J. High Energy Phys. 2021, 8, 3. [Google Scholar] [CrossRef]
- Gautason, F.F.; Schneiderbauer, L.; Sybesma, W.; Thorlacius, L. Page Curve for an Evaporating Black Hole. J. High Energy Phys. 2020, 5, 091. [Google Scholar] [CrossRef]
- Hartman, T.; Shaghoulian, E.; Strominger, A. Islands in Asymptotically Flat 2D Gravity. J. High Energy Phys. 2020, 7, 22. [Google Scholar] [CrossRef]
- Hollowood, T.J.; Kumar, S.P. Islands and Page Curves for Evaporating Black Holes in JT Gravity. J. High Energy Phys. 2020, 08, 94. [Google Scholar] [CrossRef]
- Goto, K.; Hartman, T.; Tajdini, A. Replica wormholes for an evaporating 2D black hole. J. High Energy Phys. 2021, 4, 289. [Google Scholar] [CrossRef]
- Chen, H.Z.; Fisher, Z.; Hernandez, J.; Myers, R.C.; Ruan, S.M. Evaporating Black Holes Coupled to a Thermal Bath. J. High Energy Phys. 2021, 1, 65. [Google Scholar] [CrossRef]
- Wang, X.; Li, R.; Wang, J. Page curves for a family of exactly solvable evaporating black holes. Phys. Rev. D 2021, 103, 126026. [Google Scholar] [CrossRef]
- Almheiri, A.; Mahajan, R.; Santos, J.E. Entanglement islands in higher dimensions. SciPost Phys. 2020, 9, 1. [Google Scholar] [CrossRef]
- Hashimoto, K.; Iizuka, N.; Matsuo, Y. Islands in Schwarzschild black holes. J. High Energy Phys. 2020, 6, 085. [Google Scholar] [CrossRef]
- Wang, X.; Li, R.; Wang, J. Islands and Page curves of Reissner-Nordström black holes. J. High Energy Phys. 2021, 4, 103. [Google Scholar] [CrossRef]
- Yu, M.H.; Ge, X.H. Islands and Page curves in charged dilaton black holes. Eur. Phys. J. C 2022, 82, 14. [Google Scholar] [CrossRef]
- Ahn, B.; Bak, S.E.; Jeong, H.S.; Kim, K.Y.; Sun, Y.W. Islands in charged linear dilaton black holes. Phys. Rev. D 2022, 105, 046012. [Google Scholar] [CrossRef]
- Karananas, G.K.; Kehagias, A.; Taskas, J. Islands in linear dilaton black holes. J. High Energy Phys. 2021, 3, 253. [Google Scholar] [CrossRef]
- Lu, Y.; Lin, J. Islands in Kaluza–Klein black holes. Eur. Phys. J. C 2022, 82, 132. [Google Scholar] [CrossRef]
- Krishnan, C.; Patil, V.; Pereira, J. Page Curve and the Information Paradox in Flat Space. arXiv 2020, arXiv:2005.02993. [Google Scholar]
- Mansoori, S.A.H.; Luongo, O.; Mancini, S.; Mirjalali, M.; Rafiee, M.; Tavanfar, A. Planar black holes in holographic axion gravity: Islands, Page times, and scrambling times. Phys. Rev. D 2022, 106, 126018. [Google Scholar] [CrossRef]
- Luongo, O.; Mancini, S.; Pierosara, P. Entanglement entropy for spherically symmetric regular black holes. arXiv 2023, arXiv:2304.06593. [Google Scholar]
- Alishahiha, M.; Astaneh, A.F.; Naseh, A. Island in the presence of higher derivative terms. J. High Energy Phys. 2021, 02, 35. [Google Scholar] [CrossRef]
- Anegawa, T.; Iizuka, N. Notes on islands in asymptotically flat 2d dilaton black holes. J. High Energy Phys. 2020, 7, 36. [Google Scholar] [CrossRef]
- He, S.; Sun, Y.; Zhao, L.; Zhang, Y.X. The universality of islands outside the horizon. arXiv 2023, arXiv:2110.07598. [Google Scholar] [CrossRef]
- Li, R.; Wang, X.; Wang, J. Island may not save the information paradox of Liouville black holes. Phys. Rev. D 2021, 104, 106015. [Google Scholar] [CrossRef]
- Grumiller, D.; Kummer, W.; Vassilevich, D.V. Dilaton gravity in two-dimensions. Phys. Rept. 2002, 369, 327–430. [Google Scholar] [CrossRef] [Green Version]
- Grumiller, D.; Meyer, R. Ramifications of lineland. Turk. J. Phys. 2006, 30, 349–378. [Google Scholar]
- Grumiller, D.; Ruzziconi, R.; Zwikel, C. Generalized dilaton gravity in 2d. SciPost Phys. 2022, 12, 032. [Google Scholar] [CrossRef]
- Grumiller, D.; Laihartinger, M.; Ruzziconi, R. Minkowski and (A)dS ground states in general 2d dilaton gravity. arXiv 2022, arXiv:2204.00264. [Google Scholar]
- Iyer, V.; Wald, R.M. Some properties of Noether charge and a proposal for dynamical black hole entropy. Phys. Rev. D 1994, 50, 846–864. [Google Scholar] [CrossRef] [Green Version]
- Callan, C.G., Jr.; Giddings, S.B.; Harvey, J.A.; Strominger, A. Evanescent black holes. Phys. Rev. D 1992, 45, R1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz, J.; Navarro-Salas, J.; Talavera, C.F.; Navarro, M. Conformal and non-conformal symmetries in 2-D dilaton gravity. Phys. Lett. B 1997, 402, 270–275. [Google Scholar] [CrossRef] [Green Version]
- Witten, E. Matrix Models and Deformations of JT Gravity. Proc. R. Soc. Lond. A 2020, 476, 20200582. [Google Scholar] [CrossRef]
- Mann, R.B. Liouville black holes. Nucl. Phys. B 1994, 418, 231–256. [Google Scholar] [CrossRef] [Green Version]
- Katanaev, M.O.; Kummer, W.; Liebl, H. On the completeness of the black hole singularity in 2-d dilaton theories. Nucl. Phys. B 1997, 486, 353–370. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, J. Islands in Generalized Dilaton Theories. Symmetry 2023, 15, 1402. https://doi.org/10.3390/sym15071402
Tian J. Islands in Generalized Dilaton Theories. Symmetry. 2023; 15(7):1402. https://doi.org/10.3390/sym15071402
Chicago/Turabian StyleTian, Jia. 2023. "Islands in Generalized Dilaton Theories" Symmetry 15, no. 7: 1402. https://doi.org/10.3390/sym15071402
APA StyleTian, J. (2023). Islands in Generalized Dilaton Theories. Symmetry, 15(7), 1402. https://doi.org/10.3390/sym15071402