Conditional Uncertainty Distribution of Two Uncertain Variables and Conditional Inverse Uncertainty Distribution
Abstract
:1. Introduction
2. Preliminaries
3. Conditional Uncertainty Distribution of Two Uncertain Variables
4. Conditional Inverse Uncertainty Distribution
4.1. Conditional Inverse Uncertainty Distribution Of Linear Uncertainty Distribution
4.2. Conditional Inverse Uncertainty Distribution of Normal Uncertainty Distribution
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, B. Uncertainty Theory, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Ning, Y.; Pang, N.; Wang, X. An uncertain aggregate production planning model considering investment in vegetable preservation technology. Math. Probl. Eng. 2019, 2019, 8505868. [Google Scholar] [CrossRef]
- Liu, B. Some research problems in uncertainty theory. J. Uncertain Syst. 2009, 2, 3–10. [Google Scholar]
- Gao, R.; Liu, K.; Li, Z.; Lv, R. American Barrier Option pricing formulas for stock model in uncertain environment. IEEE Access 2019, 7, 97846–97856. [Google Scholar] [CrossRef]
- Zhang, Z.; Ralescu, D.; Liu, W. Valution of interest rate ceiling and floor in uncertain financial market. Fuzzy Optim. Decis. Mak. 2016, 15, 139–154. [Google Scholar] [CrossRef]
- Liu, Y.H.; Chen, X.W.; Ralescu, D.A. Uncertain currency model and currency option pricing. Int. J. Intell. Syst. 2015, 30, 40–51. [Google Scholar] [CrossRef]
- Liu, B. Uncertain risk analysis and uncertain reliability analysis. J. Uncertain. Syst. 2010, 4, 163–170. [Google Scholar]
- Peng, J. Risk metrics of loss function for uncertain system. Fuzzy Optim Decis. Mak. 2013, 12, 53–64. [Google Scholar] [CrossRef]
- Liu, Y.; Ralescu, D.A. Expected loss of uncertain random system. Soft Comput 2018, 22, 5573–5578. [Google Scholar] [CrossRef]
- Gao, R.; Yao, K. Importance Index of Components in Uncertain Reliability Systems. J. Uncertain. Syst. 2016, 7, 7. [Google Scholar] [CrossRef]
- Li, X.; Liu, B. Hybrid Logic and Uncertain Logic. J. Uncertain. Syst. 2009, 3, 83–94. [Google Scholar]
- Chen, X.; Ralescu, D.A. A note on truth value in uncertain logic. Expert Syst. Appl. 2011, 38, 15582–15586. [Google Scholar] [CrossRef]
- Liu, B. Uncertain Entailment and Modus Ponens in the Framework of Uncertain Logic. J. Uncertain. Syst. 2009, 3, 243–251. [Google Scholar]
- Yao, K. Conditional uncertain set and conditional membership function. Fuzzy Optim. Decis. Mak. 2018, 17, 233–246. [Google Scholar] [CrossRef]
- Chen, X.; Liu, B. Existence and uniqueness theorem for uncertain differential equations. Fuzzy Optim. Decis. Mak. 2010, 9, 69–81. [Google Scholar] [CrossRef]
- Yao, K. Uncertain Differential Equations; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Lio, W.; Liu, B. Residual and confidence interval for uncertain regression model with imprecise observations. J. Intell. Fuzzy Syst. 2018, 35, 2573–2583. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, Y. Least absolute deviations estimation for uncertain regression with imprecise observations. Fuzzy Optim. Decis. Mak. 2020, 19, 33–52. [Google Scholar] [CrossRef]
- Wang, S.; Ning, Y.; Shi, H. A new uncertain linear regression model based on equation deformation. Soft Comput. 2021, 25, 12817–12824. [Google Scholar] [CrossRef]
- Yang, X.; Liu, B. Uncertain time series analysis with imprecise observations. Fuzzy Optim. Decis. Mak. 2019, 18, 263–278. [Google Scholar] [CrossRef]
- Liu, B. Fuzzy process, hybrid process and uncertain process. J. Uncertain. Syst. 2008, 2, 3–16. [Google Scholar]
- Liu, B. Uncertainty distribution and independence of uncertain processes. Fuzzy Optim. Decis. Mak. 2014, 13, 259–271. [Google Scholar] [CrossRef]
- Chen, X.; Ning, Y.; Wang, L.; Wang, S.; Huang, H. Some Theorems for Inverse Uncertainty Distribution of Uncertain Processes. Symmetry 2022, 14, 14. [Google Scholar] [CrossRef]
- Liu, B. Extreme value theorems of uncertain process with application to insurance risk model. Soft Comput. 2013, 17, 549–556. [Google Scholar] [CrossRef]
- Liu, B. Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Liu, B. Uncertainty Theory, 5th ed.; Uncertainty Theory Laboratory: Beijing, China, 2019. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Ning, Y.; Chen, X.; Chen, S.; Huang, H. Conditional Uncertainty Distribution of Two Uncertain Variables and Conditional Inverse Uncertainty Distribution. Symmetry 2023, 15, 1592. https://doi.org/10.3390/sym15081592
Wang L, Ning Y, Chen X, Chen S, Huang H. Conditional Uncertainty Distribution of Two Uncertain Variables and Conditional Inverse Uncertainty Distribution. Symmetry. 2023; 15(8):1592. https://doi.org/10.3390/sym15081592
Chicago/Turabian StyleWang, Lihui, Yufu Ning, Xiumei Chen, Shukun Chen, and Hong Huang. 2023. "Conditional Uncertainty Distribution of Two Uncertain Variables and Conditional Inverse Uncertainty Distribution" Symmetry 15, no. 8: 1592. https://doi.org/10.3390/sym15081592
APA StyleWang, L., Ning, Y., Chen, X., Chen, S., & Huang, H. (2023). Conditional Uncertainty Distribution of Two Uncertain Variables and Conditional Inverse Uncertainty Distribution. Symmetry, 15(8), 1592. https://doi.org/10.3390/sym15081592