Applications of Euler Sums and Series Involving the Zeta Functions
Abstract
:1. Introduction and Preliminaries
2. Series Involving the Zeta Functions
3. Applications
3.1. Wallis’s Infinite Product Formula for
3.2. Mathieu Series
3.3. Mellin Transforms
3.4. Determinants of Laplacians
3.5. Integrals Expressed in Terms of Euler Sums
- (a)
- p is even:
- (b)
- p is odd:
3.6. Representations and Evaluations of Integrals
3.7. Parametric Euler Sum Identities
4. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Berndt, B.C. Ramanujan’s Notebooks; Part I; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1985. [Google Scholar]
- Briggs, W.E.; Chowla, S.; Kempner, A.J.; Mientka, W.E. On some infinite series. Scr. Math. 1955, 21, 28–30. [Google Scholar]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Borwein, D.; Borwein, J.M. On an intriguing integral and some series related to ζ(4). Proc. Am. Math. Soc. 1995, 123, 1191–1198. [Google Scholar] [CrossRef]
- Basu, A.; Apostol, T.M. A new method for investigating Euler sums. Ramanujan J. 2000, 4, 397–419. [Google Scholar] [CrossRef]
- Borwein, D.; Borwein, J.M.; Girgensohn, R. Explicit evaluation of Euler sums. Proc. Edinb. Math. Soc. 1995, 38, 277–294. [Google Scholar] [CrossRef]
- De Doelder, P.J. On some series containing ψ(x) − ψ(y) and ψ(x) − ψ(y)2 for certain values of x and y. J. Comput. Appl. Math. 1991, 37, 125–141. [Google Scholar] [CrossRef]
- Choi, J.; Srivastava, H.M. Explicit evaluation of Euler and related sums. Ramanujan J. 2005, 10, 51–70. [Google Scholar] [CrossRef]
- Flajolet, P.; Salvy, B. Euler sums and contour integral representations. Exp. Math. 1998, 7, 15–35. [Google Scholar] [CrossRef]
- Nielsen, N. Die Gammafunktion; Chelsea Publishing Company: New York, NY, USA, 1965. [Google Scholar]
- Adamchik, V.S.; Srivastava, H.M. Some series of the Zeta and related functions. Analysis 1998, 18, 131–144. [Google Scholar] [CrossRef]
- Bailey, D.H.; Borwein, J.M.; Girgensohn, R. Experimental evaluation of Euler sums. Exp. Math. 1994, 3, 17–30. [Google Scholar] [CrossRef]
- Bowman, D.; Bradley, D.M. Multiple Polylogarithms: A Brief Survey in q-Series with Applications to Combinatorics, Number Theory, and Physics; (Papers from the Conference held at the University of Illinois, Urbana, Illinois; October 26–28, 2000); Berndt, B.C., Ono, K., Eds.; Contemporary Mathematics; American Mathematical Society: Providence, RI, USA, 2001; Volume 291, pp. 71–92. [Google Scholar]
- Eie, M.; Wei, C. Evaluations of some quadruple Euler sums of even weight. Funct. Approx. 2012, 46, 63–67. [Google Scholar] [CrossRef]
- Espinosa, O.; Moll, V.H. The evaluation of Tornheim double sums, Part 1. J. Number Theory 2006, 116, 200–229. [Google Scholar] [CrossRef]
- Freitas, P. Integrals of polylogarithmic functions, recurrence relations, and associated Euler sums. Math. Comput. 2005, 74, 1425–1440. [Google Scholar] [CrossRef]
- Furdui, O. Series involving products of two harmonic numbers. Math. Mag. 2011, 84, 371–377. [Google Scholar] [CrossRef]
- Li, A.; Qin, H. The representation of Euler sums with parameters. Integral Transform. Spec. Funct. 2019, 30, 55–82. [Google Scholar] [CrossRef]
- Mezö, I. Nonlinear Euler sums. Pacific J. Math. 2014, 272, 201–226. [Google Scholar] [CrossRef]
- Pilehrood, K.H.; Pilehrood, T.H.; Tauraso, R. New properties of multiple harmonic sums modulo p and p-analogues of Leshchiner’s series. Trans. Am. Math. Soc. 2014, 366, 3131–3159. [Google Scholar] [CrossRef]
- Qin, H.; Li, A.; Shang, N. On representation problems of Euler sums with multi-parameters. Integral Transform. Spec. Funct. 2014, 25, 384–397. [Google Scholar] [CrossRef]
- Qin, H.; Shang, N.; Li, A. Some identities on the Hurwitz zeta function and the extended Euler sums. Integral Transform. Spec. Funct. 2013, 24, 561–581. [Google Scholar] [CrossRef]
- Si, X.; Xu, C.; Zhang, M. Quadratic and cubic harmonic number sums. J. Math. Anal. Appl. 2017, 447, 419–434. [Google Scholar] [CrossRef]
- Sofo, A. Quadratic alternating harmonic number sums. J. Number Theory 2015, 154, 144–159. [Google Scholar] [CrossRef]
- Sofo, A. General order Euler sums with multiple argument. J. Number Theory 2018, 189, 255–271. [Google Scholar] [CrossRef]
- Wang, W.; Lyu, Y. Euler sums and Stirling sums. J. Number Theory 2018, 185, 160–193. [Google Scholar] [CrossRef]
- Xu, C. Multiple zeta values and Euler sums. J. Number Theory 2017, 177, 443–478. [Google Scholar] [CrossRef]
- Xu, C. Some evaluation of parametric Euler sums. J. Math. Anal. Appl. 2017, 451, 954–975. [Google Scholar] [CrossRef]
- Xu, C. Computation and theory of Euler sums of generalized hyperharmonic numbers. C. R. Acad. Sci. Paris Ser. I 2018, 356, 243–252. [Google Scholar] [CrossRef]
- Xu, C. Some evaluation of cubic Euler sums. J. Math. Anal. Appl. 2018, 466, 789–805. [Google Scholar] [CrossRef]
- Xu, C. Evaluations of nonlinear Euler sums of weight ten. Appl. Math. Comput. 2019, 346, 594–611. [Google Scholar] [CrossRef]
- Xu, C.; Cai, Y. On harmonic numbers and nonlinear Euler sums. J. Math. Anal. Appl. 2018, 466, 1009–1042. [Google Scholar] [CrossRef]
- Xu, C.; Cheng, J. Some results on Euler sums. Funct. Approx. 2016, 54, 25–37. [Google Scholar] [CrossRef]
- Xu, C.; Yan, Y.; Shi, Z. Euler sums and integrals of polylogarithm functions. J. Number Theory 2016, 165, 84–108. [Google Scholar] [CrossRef]
- Xu, C.; Yang, Y.; Zhang, J. Explicit evaluation of quadratic Euler sums. Int. J. Number Theory 2017, 13, 655–672. [Google Scholar] [CrossRef]
- Xu, C.; Zhao, J. Explicit evaluation of Euler-Apéry type multiple zeta star values and multiple t-star values. arXiv 2022, arXiv:2205.04242. [Google Scholar] [CrossRef]
- Alzer, H.; Choi, J. Four parametric linear Euler sums. J. Math. Anal. Appl. 2020, 484, 123661. [Google Scholar] [CrossRef]
- Borwein, D.; Borwein, J.M.; Bradley, D.M. Parametric Euler sum identities. J. Math. Anal. Appl. 2006, 316, 328–338. [Google Scholar] [CrossRef]
- Quan, J.; Xu, C.; Zhang, X. Some evaluations of parametric Euler type sums of harmonic numbers. Integral Transform. Spec. Funct. 2023, 34, 162–179. [Google Scholar] [CrossRef]
- Sofo, A.; Choi, J. Extension of the four Euler sums being linear with parameters and series involving the zeta functions. J. Math. Anal. Appl. 2022, 515, 126370. [Google Scholar] [CrossRef]
- Lagarias, J.C. Euler’s constant: Euler’s work and modern developments. Bull. Am. Math. Soc. 2013, 50, 527–628. [Google Scholar] [CrossRef]
- Sondow, J. Criteria for irrationality of Euler’s constant. Proc. Am. Math. Soc. 2003, 131, 3335–3344. [Google Scholar] [CrossRef]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Company: New York, NY, USA; Toronto, ON, Canada; London, UK, 1953; Volume I. [Google Scholar]
- Wallis, J. Computation of π by successive interpolations. In Arithmetica Infinitorum; Struik, D.J., Ed.; Oxford, 1655; reprinted in A Source Book in Mathematics, 1200–1800; Princeton University Press: Princeton, NJ, USA, 1986; pp. 244–253. [Google Scholar]
- Amdeberhan, T.; Espinosa, O.; Moll, V.H.; Straub, A. Wallis-Ramanujan-Schur-Feynman. Am. Math. Mon. 2010, 117, 618–632. [Google Scholar] [CrossRef]
- Ben-Ari, I.; Hay, D.; Roitershtein, A. On Wallis-type products and Pólya’s urn schemes. Am. Math. Mon. 2017, 121, 422–432. [Google Scholar] [CrossRef]
- Berggren, L.; Borwein, J.; Borwein, P. (Eds.) Pi: A Source Book, 2nd ed.; Springer: New York, NY, USA, 2000. [Google Scholar]
- Borwein, J.M.; Borwein, P.B. Pi and the AGM; John Wiley & Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada; Singapore, 1987. [Google Scholar]
- Brun, V. Wallis’s og Brounckers formler for π. Nor. Mat. Tidskr. 1951, 33, 73–81. (In Norwegian) [Google Scholar]
- Catalan, E. Sur la constante d’Euler et la fonction de Binet. C. R. Acad. Sci. Paris Sér. I Math. 1873, 77, 198–201. Available online: http://gallica.bnf.fr/ark:/12148/bpt6k3034n.image.f1.langEN (accessed on 21 July 2023).
- Miller, S.J. A probabilistic proof of Wallis’s formula for π. Am. Math. Mon. 2008, 115, 740–745. [Google Scholar] [CrossRef]
- Sondow, J.; Yi, H. New Wallis- and Catalan-type infinite products for π, e, and . Am. Math. Mon. 2010, 117, 912–917. [Google Scholar] [CrossRef]
- Wästlund, J. An elementary proof of the Wallis product formula for Pi. Am. Math. Mon. 2007, 114, 914–917. [Google Scholar] [CrossRef]
- Yaglom, A.M.; Yaglom, I.M. An elementary derivation of the formulas of Wallis, Leibnitz and Euler for the number π. Uspechi Mat. Nauk. N. S. 1953, 57, 181–187. (In Russian) [Google Scholar]
- Mathieu, E´.L. Traite´ de Physique Mathe´matque. VI–VII: Theory de l’Elasticite´ des Corps Solides; (Part 2); Gauthier-Villars: Paris, France, 1890. [Google Scholar]
- Emersleben, O. U¨ber die Reihe . Math. Ann. 1952, 125, 165–171. [Google Scholar] [CrossRef]
- Poga´ny, T.K.; Srivastava, H.M.; Tomovski, Zˇ. Some families of Mathieu a-series and alternating Mathieu a-series. Appl. Math. Comput. 2006, 173, 69–108. [Google Scholar]
- Baricz, Á.; Butzer, P.L.; Pogány, T.K. Alternating Mathieu series, Hilbert-Eisenstein series and their generalized Omega functions. In Analytic Number Theory, Approximation Theory, and Special Functions; Rassias, T., Milovanović, G.V., Eds.; In Honor of Hari M. Srivastava; Springer: New York, NY, USA, 2014; pp. 775–808. [Google Scholar]
- Butzer, P.L.; Pogány, T.K. A fresh approach to classical Eisenstein series and the newer Hilbert-Eisenstein series. Int. J. Number Theory 2017, 13, 885–911. [Google Scholar] [CrossRef]
- Cerone, P.; Lenard, C.T. On integral forms of generalized Mathieu series. J. Inequal. Pure Appl. Math. 2003, 4, 100. [Google Scholar]
- Choi, J.; Parmar, R.K.; Pogány, T.K. Mathieu-type series built by (p, q)-extended Gaussian hypergeometric function. Bull. Korean Math. Soc. 2017, 54, 789–797. [Google Scholar] [CrossRef]
- Choi, J.; Srivastava, H.M. Mathieu series and associated sums involving the Zeta functions. Comput. Math. Appl. 2010, 59, 861–867. [Google Scholar] [CrossRef]
- Diananda, P.H. Some inequalities related to an inequality of Mathieu. Math. Ann. 1980, 250, 95–98. [Google Scholar] [CrossRef]
- Elezović, N.; Srivastava, H.M.; Tomovski, Z. Integral representations and integral transforms of some families of Mathieu type series. Integral Transform. Spec. Funct. 2008, 19, 481–495. [Google Scholar] [CrossRef]
- Milovanović, G.V.; Pogány, T.K. New integral forms of generalized Mathieu series and related applications. Appl. Anal. Discret. Math. 2013, 7, 180–192. [Google Scholar] [CrossRef]
- Parmar, R.K.; Milovanović, G.V.; Pogány, T.K. Extension of Mathieu series and alternating Mathieu series involving Neumann function Yν. Period. Math. Hung. 2023, 86, 191–209. [Google Scholar] [CrossRef]
- Parmar, R.K.; Milovanović, G.V.; Pogány, T.K. Multi-parameter Mathieu, and alternating Mathieu series. Appl. Math. Comp. 2021, 400, 126099. [Google Scholar] [CrossRef]
- Parmar, R.K.; Pogány, T.K. On Mathieu-type series for the unified Gaussian hypergeometric functions. Appl. Anal. Discret. Math. 2020, 14, 138–149. [Google Scholar] [CrossRef]
- Pogány, T.K.; Parmar, R.K. On p-extended Mathieu series. Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 2018, 22, 107–117. [Google Scholar] [CrossRef]
- Qi, F. An integral expression and some inequalities of Mathieu series. Rostock. Math. Kolloq. 2004, 58, 37–46. [Google Scholar]
- Srivastava, H.M.; Tomovski, Z. Some problems and solutions involving Mathieu’s series and its generalizations. J. Inequal. Pure Appl. Math. 2004, 5, 45. [Google Scholar]
- Tomovski, Z. New double inequality for Mathieu series. Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. 2004, 15, 79–83. [Google Scholar]
- Tomovski, Z. Integral representations of generalized Mathieu series via Mittag-Leffler type functions. Fract. Calc. Appl. Anal. 2007, 10, 127–138. [Google Scholar]
- Tomovski, Z.; Pogány, T.K. Integral expressions for Mathieu–type power series and for the Butzer-Flocke- Hauss Ω-function. Fract. Calc. Appl. Anal. 2011, 14, 623–634. [Google Scholar] [CrossRef]
- Choi, J.; Srivastava, H.M. Some applications of the Gamma and polygamma functions involving convolutions of the Rayleigh functions, multiple Euler sums and log-sine integrals. Math. Nachr. 2009, 282, 1709–1723. [Google Scholar] [CrossRef]
- Magnus, W.; Oberhettinger, F.; Soni, R.P. Formulas and Theorems for the Special Functions of Mathematical Physics; Third Enlarged Edition; Springer: New York, NY, USA, 1966. [Google Scholar]
- Brychkov, Y.A.; Marichev, O.I.; Savischenko, N.V. Handbook of Mellin Transforms; CRC Press; Taylor &Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2019. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Tables of Integral Transforms; McGraw-Hill Book Company: New York, NY, USA; Toronto, ON, Canada; London, UK, 1954; Volume I. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 6th ed.; Academic Press: San Diego, San Francisco, CA, USA; New York, NY, USA; Boston, MA, USA; London, UK; Sydney, Australia; Tokyo, Japan, 2000. [Google Scholar]
- Debnath, L.; Bhatta, D. Integral Transforms and Their Applications, 3rd ed.; CRC Press; Taylor & Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2015. [Google Scholar]
- D’Hoker, E.; Phong, D.H. On determinant of Laplacians on Riemann surface. Comm. Math. Phys. 1986, 104, 537–545. [Google Scholar] [CrossRef]
- D’Hoker, E.; Phong, D.H. Multiloop amplitudes for the bosonic Polyakov string. Nucl. Phys. B 1986, 269, 204–234. [Google Scholar] [CrossRef]
- Sarnak, P. Determinants of Laplacians. Comm. Math. Phys. 1987, 110, 113–120. [Google Scholar] [CrossRef]
- Voros, A. Special functions, spectral functions and the Selberg Zeta function. Comm. Math. Phys. 1987, 110, 439–465. [Google Scholar] [CrossRef]
- Choi, J. Determinant of Laplacian on S3. Math. Japon. 1994, 40, 155–166. [Google Scholar]
- Kumagai, H. The determinant of the Laplacian on the n-sphere. Acta Arith. 1999, 91, 199–208. [Google Scholar] [CrossRef]
- Osgood, B.; Phillips, R.; Sarnak, P. Extremals of determinants of Laplacians. J. Funct. Anal. 1988, 80, 148–211. [Google Scholar] [CrossRef]
- Quine, J.R.; Choi, J. Zeta regularized products and functional determinants on spheres. Rocky Mt. J. Math. 1996, 26, 719–729. [Google Scholar] [CrossRef]
- Quine, J.R.; Heydari, S.H.; Song, R.Y. Zeta regularized products. Trans. Am. Math. Soc. 1993, 338, 213–231. [Google Scholar] [CrossRef]
- Vardi, I. Determinants of Laplacians and multiple Gamma functions. SIAM J. Math. Anal. 1988, 19, 493–507. [Google Scholar] [CrossRef]
- Terras, A. Harmonic Analysis on Symmetric Spaces and Applications; Springer: New York, NY, USA, 1985; Volume I. [Google Scholar]
- Barnes, E.W. The theory of the G-function. Quart. J. Math. 1899, 31, 264–314. [Google Scholar]
- Barnes, E.W. Genesis of the double Gamma function. Proc. Lond. Math. Soc. (Ser. 1) 1900, 31, 358–381. [Google Scholar] [CrossRef]
- Barnes, E.W. The theory of the double Gamma function. Philos. Trans. R. Soc. Lond. Ser. A 1901, 196, 265–388. [Google Scholar]
- Barnes, E.W. On the theory of the multiple Gamma functions. Trans. Camb. Philos. Soc. 1904, 19, 374–439. [Google Scholar]
- Choi, J.; Srivastava, H.M. An application of the theory of the double Gamma function. Kyushu J. Math. 1999, 53, 209–222. [Google Scholar] [CrossRef]
- Choi, J.; Srivastava, H.M. Certain classes of series associated with the Zeta function and multiple Gamma functions. J. Comput. Appl. Math. 2000, 118, 87–109. [Google Scholar] [CrossRef]
- Choi, J.; Cho, Y.J.; Srivastava, H.M. Series involving the Zeta function and multiple Gamma functions. Appl. Math. Comput. 2004, 159, 509–537. [Google Scholar] [CrossRef]
- Choi, J. Determinants of the Laplacians on the n-dimensional unit sphere Sn (n = 8, 9). Honam Math. J. 2011, 33, 321–333. [Google Scholar] [CrossRef]
- Choi, J. Determinants of the Laplacians on the n-dimensional unit sphere Sn. Adv. Diff. Equ. 2013, 2013, 236. Available online: http://www.advancesindifferenceequations.com/content/2013/1/236 (accessed on 21 July 2023). [CrossRef]
- Raynor, G.E. On Serret’s integral formula. Bull. Am. Math. Soc. 1939, 45, 911–917. [Google Scholar] [CrossRef]
- Rutledge, G.; Douglass, R.D. Evaluation of log2(1 + u)du and related definite integrals. Am. Math. Mon. 1934, 41, 29–36. [Google Scholar]
- Rutledge, G.; Douglass, R.D. Table of definite integrals. Am. Math. Mon. 1938, 45, 525–530. [Google Scholar] [CrossRef]
- Hansen, E.R. A Table of Series and Products; Prentice-Hall: Englewood Cliffs, NJ, USA, 1975. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Sofo, A. Applications of Euler Sums and Series Involving the Zeta Functions. Symmetry 2023, 15, 1637. https://doi.org/10.3390/sym15091637
Choi J, Sofo A. Applications of Euler Sums and Series Involving the Zeta Functions. Symmetry. 2023; 15(9):1637. https://doi.org/10.3390/sym15091637
Chicago/Turabian StyleChoi, Junesang, and Anthony Sofo. 2023. "Applications of Euler Sums and Series Involving the Zeta Functions" Symmetry 15, no. 9: 1637. https://doi.org/10.3390/sym15091637
APA StyleChoi, J., & Sofo, A. (2023). Applications of Euler Sums and Series Involving the Zeta Functions. Symmetry, 15(9), 1637. https://doi.org/10.3390/sym15091637