Anomaly-Induced Quenching of gA in Nuclear Matter and Impact on Search for Neutrinoless ββ Decay
Abstract
:1. Introduction
2. The “Genuine Dilaton (GD)” and Nuclear Axial Current
3. Quenching of in GEFT
3.1. as a Landau Fermi-Liquid Fixed-Point Quantity
3.2. Accessing
4. Mapping the Landau–Fermi-Liquid Fixed Point Approximation to the Shell Model
5. Evidences
Evidence for Big
6. Concluding Remarks
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, Y.L.; Rho, M. Quenched gA in nuclei and emergent scale symmetry in baryonic matter. Phys. Rev. Lett. 2020, 125, 142501. [Google Scholar] [CrossRef] [PubMed]
- Suhonen, J.T. Value of the axial-vector coupling strength in β and ββ decays: A Review. Front. Phys. 2017, 5, 55. [Google Scholar] [CrossRef]
- Wilkinson, D.H. Nuclear Physics with Heavy Ions and Mesons; Balian, R., Rho, M., Ripka, G., Eds.; North-Holland: Amsterdam, The Netherlands, 1978. [Google Scholar]
- King, G.B.; Andreoli, L.; Pastore, S.; Piarulli, M.; Schiavilla, R.; Wiringa, R.B.; Carlson, J.; Gandolfi, S. Chiral Effective Field Theory Calculations of Weak Transitions in Light Nuclei. Phys. Rev. C 2020, 102, 025501. [Google Scholar] [CrossRef]
- Lubos, D.; Park, J.; Faestermann, T.; Gernhaeuser, R.; Kruecken, R.; Lewitowicz, M.; Nishimura, S.; Sakurai, H.; Ahn, D.S.; Baba, H.; et al. Improved value for the Gamow-Teller strength of the 100Sn beta decay. Phys. Rev. Lett. 2019, 122, 222502. [Google Scholar] [CrossRef]
- Crewther, R.J. Genuine dilatons in gauge theories. Universe 2020, 6, 96. [Google Scholar] [CrossRef]
- Crewther, R.J.; Tunstall, L.C. ΔI = 1/2 rule for kaon decays derived from QCD infrared fixed point. Phys. Rev. D 2015, 91, 034016. [Google Scholar] [CrossRef]
- Debbio, L.D.; Zwicky, R. Dilaton and massive hadrons in a conformal phase. J. High Energy Phys. 2022, 2022, 7. [Google Scholar] [CrossRef]
- Zwicky, R. QCD with an Infrared Fixed Point—Pion sector. arXiv 2023, arXiv:2306.06752. [Google Scholar]
- Harada, M.; Yamawaki, K. Hidden local symmetry at loop: A New perspective of composite gauge boson and chiral phase transition. Phys. Rept. 2003, 381, 1–233. [Google Scholar] [CrossRef]
- Komargodski, Z. Vector mesons and an interpretation of Seiberg duality. J. High Energy Phys. 2011, 2011, 19. [Google Scholar] [CrossRef]
- Ma, Y.L.; Rho, M. Towards the hadron–quark continuity via a topology change in compact stars. Prog. Part. Nucl. Phys. 2020, 113, 103791. [Google Scholar] [CrossRef]
- Catà, O.; Müller, C. Chiral effective theories with a light scalar at one loop. Nucl. Phys. B 2020, 952, 114938. [Google Scholar] [CrossRef]
- Li, Y.L.; Ma, Y.L.; Rho, M. Chiral-scale effective theory including a dilatonic meson. Phys. Rev. D 2017, 95, 114011. [Google Scholar] [CrossRef]
- Hammer, H.W.; König, S.; van Kolck, U. Nuclear effective field theory: Status and perspectives. Rev. Mod. Phys. 2020, 92, 025004. [Google Scholar] [CrossRef]
- Shankar, R. Renormalization group approach to interacting fermions. Rev. Mod. Phys. 1994, 66, 129–192. [Google Scholar] [CrossRef]
- Friman, B.; Rho, M. From chiral Lagrangians to Landau Fermi liquid theory of nuclear matter. Nucl. Phys. A 1996, 606, 303–319. [Google Scholar] [CrossRef]
- Serot, B.D.; Walecka, J.D. The relativistic nuclear many body problem. Adv. Nucl. Phys. 1986, 16, 1–327. [Google Scholar]
- Brown, G.E.; Rho, M. Scaling effective Lagrangians in a dense medium. Phys. Rev. Lett. 1991, 66, 2720. [Google Scholar] [CrossRef]
- Matsui, T. Fermi liquid properties of nuclear matter in a relativistic meanfield theory. Nucl. Phys. A 1981, 370, 365–388. [Google Scholar] [CrossRef]
- Rho, M. Dense baryonic matter predicted in pseudo-conformal model. Symmetry 2023, 15, 1271. [Google Scholar] [CrossRef]
- Kohn, W. Cyclotron resonance and de Haas-van Alphen oscillations of an interacting electron gas. Phys. Rev. 1961, 123, 1242. [Google Scholar] [CrossRef]
- Migdal, A.B. Theory of Finite Systems and Applications to Finite Nuclei; Interscience: London, UK, 1967. [Google Scholar]
- Appelquist, T.; Ingoldby, J.; Piai, M. Dilaton effective field theory. Universe 2023, 9, 10. [Google Scholar] [CrossRef]
- Hinke, C.B.; Böhmer, M.; Boutachkov, P.; Faestermann, T.; Geissel, H.; Gerl, J.; Gernhäuser, R.; Górska, M.; Gottardo, A.; Grawe, H.; et al. Superallowed Gamow-Teller decay of the doubly magic nucleus 100Sn. Nature 2012, 486, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Faestermann, T.; Gorska, M.; Grawe, H. The structure of 100 Sn and neighboring nuclei. Prog. Part. Nucl. Phys. 2013, 69, 85–130. [Google Scholar] [CrossRef]
- Gysbers, P.; Hagen, G.; Holt, J.D.; Jansen, G.R.; Morris, T.D.; Navrátil, P.; Papenbrock, T.; Quaglioni, S.; Schwenk, A.; Stroberg, S.R.; et al. Discrepancy between experimental and theoretical β-decay rates resolved from first principles. Nat. Phys. 2019, 15, 428–431. [Google Scholar] [CrossRef]
- Mayer, D.; Ouellet, J.L.; Danevich, F.A.; Dumoulin, L.; Giuliani, A.; Kostensalo, J.; Kotila, J.; de Marcillac, P.; Nones, C.; Novati, V.; et al. Determining gA/gV with high-resolution spectral measurements using a LiInSe2 bolometer. Phys. Rev. Lett. 2022, 129, 232502. [Google Scholar]
- Warburton, E.K. First-forbidden beta decay in the lead region and mesonic enhancement of the weak axial current. Phys. Rev. C 1991, 44, 233. [Google Scholar] [CrossRef]
- Kubodera, K.; Rho, M. Axial charge transitions in heavy nuclei and in-medium effective chiral Lagrangians. Phys. Rev. Lett. 1991, 67, 3479. [Google Scholar] [CrossRef]
- Matsuta, K.; Minamisono, T.; Yamaguchi, T.; Sumikama, T.; Nagatomo, T.; Ogura, M.; Iwakoshi, T.; Fukuda, M.; Mihara, M.; Koshigiri, K. In-medium nucleon mass renormalization detected in beta decays of spin aligned B-12 and N-12. Phys. Rev. C 2002, 65, 015209. [Google Scholar]
- Kostensalo, J.; Suhonen, J. Mesonic enhancement of the weak axial charge and its effect on the half-lives and spectral shapes of first-forbidden J+ ↔ J− decays. Phys. Lett. B 2018, 781, 480–484. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rho, M. Anomaly-Induced Quenching of gA in Nuclear Matter and Impact on Search for Neutrinoless ββ Decay. Symmetry 2023, 15, 1648. https://doi.org/10.3390/sym15091648
Rho M. Anomaly-Induced Quenching of gA in Nuclear Matter and Impact on Search for Neutrinoless ββ Decay. Symmetry. 2023; 15(9):1648. https://doi.org/10.3390/sym15091648
Chicago/Turabian StyleRho, Mannque. 2023. "Anomaly-Induced Quenching of gA in Nuclear Matter and Impact on Search for Neutrinoless ββ Decay" Symmetry 15, no. 9: 1648. https://doi.org/10.3390/sym15091648
APA StyleRho, M. (2023). Anomaly-Induced Quenching of gA in Nuclear Matter and Impact on Search for Neutrinoless ββ Decay. Symmetry, 15(9), 1648. https://doi.org/10.3390/sym15091648