Research Progress of Topological Quantum Materials: From First-Order to Higher-Order
Abstract
:1. Introduction
2. First-Order Topological Quantum Phase
2.1. Quantum Hall Effect
2.2. Quantum Spin Hall Effect
2.3. Quantum Anomalous Hall Effect
2.4. Three-Dimensional Topological Insulator
2.5. Topological Semimetal
2.5.1. Dirac Semimetal
2.5.2. Weyl Semimetal
2.5.3. Nodal Line Semimetal
3. Higher-Order Topological Quantum Phase
3.1. Topological Crystalline Insulator
3.2. Higher-Order Topological Insulator
3.2.1. Quantized Quadrupole Topological Insulator
3.2.2. Two-Dimensional Su–Schrieffer–Heeger (SSH) Model
3.2.3. Three-Dimensional Higher-Order Topological Insulator
3.3. Higher-Order Topological Semimetal
4. Summary and Discussion
- (1)
- Studying the models of two-dimensional higher-order topological states and exploring suitable material systems. This entails conducting in-depth theoretical analyses and systematic explorations of the underlying physical mechanisms based on lattice models. It is crucial to recognize that the topological properties of electronic and phononic material systems are influenced by distinct factors. In the case of electronic systems, these factors encompass the lattice structure, atomic orbital types, and SOC. Whereas, for phononic systems, the relevant factors include the lattice structure and atomic vibration modes.
- (2)
- Investigating the control of two-dimensional higher-order topological states through external manipulation. Building upon existing models and discovered real materials for two-dimensional higher-order topological states, studies should be conducted of the influence of various external factors (such as stress, electric field, magnetic field, and stacking) on the electronic and phononic structures. Future works should also study potential higher-order topological phase transitions, analyze the underlying physical mechanisms, and derive applicable rules and guidelines.
- (3)
- Exploring the novel category of higher-order topological phases that involve the coexistence of electrons and phonons. Studies can utilize the breathing lattice mechanism to explore this new type of higher-order topological phase where electrons and phonons coexist, as well as uncovering the underlying formation mechanism, thereby establishing a platform for investigating the interplay between electronic and phononic higher-order topological states. Additionally, studies should be conducted of the potential for higher-order topological superconductivity within this context.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bansil, A.; Lin, H.; Das, T. Colloquium: Topological band theory. Rev. Mod. Phys. 2016, 88, 21004. [Google Scholar] [CrossRef]
- Hasan, M.Z.; Kane, C.L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045. [Google Scholar] [CrossRef]
- Qi, X.; Zhang, S. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057. [Google Scholar] [CrossRef]
- Armitage, N.P.; Mele, E.J.; Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 2018, 90, 15001. [Google Scholar] [CrossRef]
- Lu, L.; Joannopoulos, J.D.; Soljačić, M. Topological photonics. Nat. Photonics 2014, 8, 103–829. [Google Scholar] [CrossRef]
- Zhang, X.J.; Xiao, M.; Cheng, Y.; Lu, M.H.; Christensen, J. Topological sound. Commun. Phys. 2018, 1, 97. [Google Scholar] [CrossRef]
- Yang, Z.; Gao, F.; Shi, X.H.; Lin, X.; Gao, Z.; Chong, Y.; Zhang, B. Topological acoustics. Phys. Rev. Lett. 2015, 114, 114301. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Ni, X.; Ge, H.; Sun, X.C.; Chen, Y.B.; Lu, M.H.; Liu, X.P.; Chen, Y.F. Acoustic topological insulator and robust one-way sound transport. Nat. Phys. 2016, 12, 1124–1129. [Google Scholar] [CrossRef]
- Xiao, M.; Chen, W.J.; He, W.Y.; Chan, C.T. Synthetic gauge flux and Weyl points in acoustic systems. Nat. Phys. 2015, 11, 920–924. [Google Scholar] [CrossRef]
- Xie, B.Y.; Liu, H.; Cheng, H.; Liu, Z.; Chen, S.; Tian, J. Experimental realization of type-II Weyl points and fermi arcs in phononic crystal. Phys. Rev. Lett. 2019, 122, 104302. [Google Scholar] [CrossRef]
- Xie, B.Y.; Liu, H.; Cheng, H.; Liu, Z.; Chen, S.; Tian, J. Acoustic topological transport and refraction in a Kekulé Lattice. Phys. Rev. Appl. 2019, 11, 44086. [Google Scholar] [CrossRef]
- Huber, S.D. Topological mechanics. Nat. Phys. 2016, 12, 621–623. [Google Scholar] [CrossRef]
- Rocklin, D.Z.; Zhou, S.N.; Sun, K.; Mao, X. Transformable topological mechanical metamaterials. Nat. Commun. 2017, 8, 14201. [Google Scholar] [CrossRef] [PubMed]
- Klitzing, K.V.; Dorda, G.; Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 1980, 45, 494–497. [Google Scholar] [CrossRef]
- Cage, M.E.; Klitzing, K.; Chang, A.M.; Duncan, F.; Haldane, M.; Laughlin, R.B.; Pruisken, A.; Thouless, D.J. The Quantum Hall Effect; Springer: New York, NY, USA, 2012. [Google Scholar]
- Laughlin, R.B. Quantized Hall conductivity in two dimensions. Phys. Rev. B 1981, 23, 5632. [Google Scholar] [CrossRef]
- Thouless, D.J.; Kohmoto, M.; Nightingale, M.P.; Den, N.M.D. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 1982, 49, 405. [Google Scholar] [CrossRef]
- Haldane, F.D.M. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 1988, 61, 2015. [Google Scholar] [CrossRef] [PubMed]
- Hatsugai, Y. Chern number and edge states in the integer quantum Hall effect. Phys. Rev. Lett. 1993, 71, 3697. [Google Scholar] [CrossRef]
- Qi, X.; Hughes, T.L.; Zhang, S. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 2008, 78, 195424. [Google Scholar] [CrossRef]
- Haldane, F.D.M. Nobel lecture: Topological quantum matter. Rev. Mod. Phys. 2017, 89, 40502. [Google Scholar] [CrossRef]
- Kane, C.L.; Mele, E.J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 2005, 95, 146802. [Google Scholar] [CrossRef]
- Bernevig, B.A.; Hughes, T.L.; Zhang, S.C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 2006, 314, 1757. [Google Scholar] [CrossRef]
- König, M.; Wiedmann, S.; Brüne, C.; Roth, A.; Buhmann, H.; Molenkamp, L.W.; Qi, D.L.; Zhang, S.C. Quantum spin Hall insulator state in HgTe quantum wells. Science 2007, 318, 766. [Google Scholar] [CrossRef]
- Yu, R.; Zhang, W.; Zhang, H.J.; Zhang, S.C.; Dai, X.; Fang, Z. Quantized anomalous Hall effect in magnetic topological insulators. Science 2010, 329, 61. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.Z.; Zhang, J.; Feng, X.; Shen, J.; Zhang, Z.; Guo, M.; Li, K.; Ou, Y.; Wei, P.; Wang, L.L.; et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 2013, 340, 167. [Google Scholar] [CrossRef] [PubMed]
- Oh, S. The complete quantum Hall trio. Science 2013, 340, 153. [Google Scholar] [CrossRef]
- Weng, H.; Yu, R.; Hu, X.; Dai, X.; Fang, Z. Quantum anomalous Hall effect and related topological electronic states. Adv. Phys. 2015, 64, 227. [Google Scholar] [CrossRef]
- Fu, L.; Kane, C.L.; Mele, E.J. Topological insulators in three dimensions. Phys. Rev. Lett. 2007, 98, 106803. [Google Scholar] [CrossRef]
- Fu, L.; Kane, C.L. Topological insulators with inversion symmetry. Phys. Rev. B 2007, 76, 45302. [Google Scholar] [CrossRef]
- Hsieh, D.; Qian, D.; Wray, L.; Xia, Y.; Hor, Y.S.; Cava, R.J.; Hasan, M.Z. A topological Dirac insulator in a quantum spin Hall phase. Nature 2008, 452, 970. [Google Scholar] [CrossRef] [PubMed]
- Neupane, M.; Richardella, A.; Sánchez-Barriga, J.; Xu, S.; Alidoust, N.; Belopolski, I.; Liu, C.; Bian, G.; Zhang, D.; Marchenko, D.; et al. Observation of quantum-tunnelling-modulated spin texture in ultrathin topological insulator Bi2Se3 films. Nat. Commun. 2014, 5, 3841. [Google Scholar] [CrossRef]
- Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y.S.; Cava, R.J.; et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 398. [Google Scholar] [CrossRef]
- Chen, E.J.; Analytis, J.G.; Chu, J.H.; Liu, Z.K.; Mo, S.K.; Qi, X.L.; Zhang, H.J.; Lu, D.H.; Dai, X.; Fang, Z.; et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 2009, 325, 178. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, D.; Xia, Y.; Qian, D.; Wray, L.; Meier, F.; Dil, J.H.; Osterwalder, J.; Patthey, L.; Fedorov, A.V.; Lin, H.; et al. Observation of time-reversal-protected single-Dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3. Phys. Rev. Lett. 2009, 103, 146401. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, C.X.; Qi, X.L.; Dai, X.; Fang, Z.; Zhang, S.C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438. [Google Scholar] [CrossRef]
- Roushan, P.; Seo, J.; Parker, C.; Hor, Y.S.; Hsieh, D.; Qian, D.; Richardella, A.; Hasan, M.Z.; Cava, R.J.; Yazdani, A. Topological surface states protected from backscattering by chiral spin texture. Nature 2009, 460, 1106–1109. [Google Scholar] [CrossRef]
- Yang, Q.; Dolev, M.; Zhang, L.; Zhao, J.; Fried, A.D.; Schemm, E.; Liu, M.; Palevski, A.; Marshall, A.F.; Risbud, S.H.; et al. Emerging weak localization effects on a topological insulator–insulating ferromagnet (Bi2Se3-EuS) interface. Phys. Rev. B 2013, 88, 081407. [Google Scholar] [CrossRef]
- Arimoto, K.; Koretsune, T.; Nomura, K. Current-induced dynamics of isolated antiferromagnetic antiskyrmion and antiskyrmionium. Phys. Rev. B 2021, 103, 235315. [Google Scholar] [CrossRef]
- Young, S.M.; Zaheer, S.; Teo, J.C.Y.; Kane, C.L.; Mele, E.J.; Rappe, A.M. Dirac semimetal in three dimensions. Phys. Rev. Lett. 2012, 108, 140405. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Y.; Chen, X.Q.; Franchini, C.; Xu, G.; Weng, H.; Dai, X.; Fang, Z. Dirac semimetal and topological phase transitions in A3Bi (A=Na, K, Rb). Phys. Rev. B 2012, 85, 195320. [Google Scholar] [CrossRef]
- Wan, X.; Turner, A.M.; Vishwanath, A.; Savrasov, S.Y. Topological semimetal and fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 2011, 83, 205101. [Google Scholar] [CrossRef]
- Weng, H.; Fang, C.; Fang, Z.; Bernevig, B.A.; Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 2015, 5, 11029. [Google Scholar] [CrossRef]
- Lv, B.Q.; Weng, H.M.; Fu, B.B.; Wang, X.P.; Miao, H.; Ma, J.; Richard, P.; Huang, X.C.; Zhao, L.X.; Chen, G.F.; et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 2015, 5, 31013. [Google Scholar] [CrossRef]
- Liu, D.F.; Liang, A.J.; Liu, E.K.; Xu, Q.N.; Li, Y.W.; Chen, C.; Pei, D.; Shi, W.J.; Mo, S.K.; Dudin, P.; et al. Magnetic Weyl semimetal phase in a kagomé crystal. Science 2019, 365, 1282–1285. [Google Scholar] [CrossRef]
- Wieder, B.J.; Kim, Y.; Rappe, A.M.; Kane, C.L. Double Dirac semimetals in three dimensions. Phys. Rev. Lett. 2016, 116, 186402. [Google Scholar] [CrossRef]
- Liu, B.; Liu, Z.; Zhang, W.; Wang, Z.F. Symmetry-engineered nodal lines and hourglass fermions in patterned two-dimensional electron gas. Phys. Rev. B 2023, 107, 115423. [Google Scholar] [CrossRef]
- Kim, Y.; Wieder, B.J.; Kane, C.L.; Rappe, A.M. Dirac line nodes in inversion-symmetric crystals. Phys. Rev. Lett. 2015, 115, 36806. [Google Scholar] [CrossRef]
- Yu, R.; Weng, H.; Fang, Z.; Dai, X.; Hu, X. Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN. Phys. Rev. Lett. 2015, 115, 36807. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Weng, H.; Dai, X.; Fang, Z. Topological nodal line semimetals. Chin. Phys. B 2016, 25, 117106. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Wang, Z.F.; Yang, J.; Liu, F. Pressure-induced organic topological nodal-line semimetal in the three-dimensional molecular crystal Pd(dddt)2. Phys. Rev. B 2018, 97, 155138. [Google Scholar] [CrossRef]
- Wieder, B.J. Threes company. Nat. Phys. 2018, 14, 329–330. [Google Scholar] [CrossRef]
- Bradlyn, B.; Cano, J.; Wang, Z.; Vergniory, M.G.; Felser, C.; Cava, R.J.; Bernevig, B.A. Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals. Science 2016, 353, 558. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.; Zhou, B.B.; Gyenis, A.; Feldman, B.E.; Kimchi, I.; Potter, A.C.; Gibson, Q.D.; Cava, R.J.; Vishwanath, A.; Yazdani, A. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2. Nat. Mater. 2014, 13, 851–856. [Google Scholar] [CrossRef]
- Feng, J.; Pang, Y.; Wu, D.; Wang, Z.; Weng, H.; Li, J.; Dai, X.; Fang, Z.; Shi, Y.; Lu, L. Large linear magnetoresistance in Dirac semimetal Cd3As2 with fermi surfaces close to the Dirac points. Phys. Rev. B 2015, 92, 081306. [Google Scholar] [CrossRef]
- Zhang, C.L.; Xu, S.Y.; Belopolski, I.; Yuan, Z.; Lin, Z.; Tong, B.; Bian, G.; Alidoust, N.; Lee, C.C.; Huang, S.M.; et al. Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal. Nat. Commun. 2016, 7, 10735. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhao, L.; Long, Y.; Wang, P.; Chen, D.; Yang, Z.; Liang, H.; Xue, M.; Weng, H.; Fang, Z.; et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 2015, 5, 31023. [Google Scholar] [CrossRef]
- Rajamathi, C.R.; Gupta, U.; Kumar, N.; Yang, H.; Sun, Y.; Süß, V.; Shekhar, C.; Schmidt, M.; Blumtritt, H.; Werner, P.; et al. Weyl semimetals as hydrogen evolution catalysts. Adv. Mater. 2017, 29, 1606202. [Google Scholar] [CrossRef]
- Li, J.; Ma, H.; Xie, Q.; Feng, S.; Ullah, S.; Li, R.; Dong, J.; Li, D.; Li, Y.; Chen, X.Q. Topological quantum catalyst: Dirac nodal line states and a potential electrocatalyst of hydrogen evolution in the TiSi family. Sci. China Mater. 2018, 61, 23–29. [Google Scholar] [CrossRef]
- Nayak, C.; Simon, S.H.; Stern, A.; Freedman, M.; Sarma, S.D. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 2008, 80, 1083. [Google Scholar] [CrossRef]
- Yang, S.A. Dirac and Weyl materials: Fundamental aspects and some spintronics applications. Spin 2016, 6, 1640003. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.B.; Tan, Y.W.; Stormer, H.L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Rodan-Legrain, D.; Rubies-Bigorda, O.; Park, J.M.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Tunable correlated states and spin-polarized phases in twisted bilayer-bilayer graphene. Nature 2020, 583, 215. [Google Scholar] [CrossRef]
- Uri, A.; Grover, S.; Cao, Y.; Crosse, J.A.; Bagani, K.; RodanLegrain, D.; Myasoedov, Y.; Watanabe, K.; Taniguchi, T.; Moon, P.; et al. Mapping the twist-angle disorder and Landau levels in magic-angle graphene. Nature 2020, 581, 47. [Google Scholar] [CrossRef]
- Liu, Z.K.; Zhou, B.; Zhang, Y.; Wang, Z.J.; Weng, H.M.; Prabhakaran, D.; Mo, S.K.; Shen, Z.X.; Fang, Z.; Dai, X.; et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 2014, 343, 864. [Google Scholar] [CrossRef]
- Xu, S.Y.; Liu, C.; Kushwaha, S.K.; Sankar, R.; Krizan, J.W.; Belopolski, I.; Neupane, M.; Bian, G.; Alidoust, N.; Chang, T.R.; et al. Observation of fermi arc surface states in a topological metal. Science 2015, 347, 294. [Google Scholar] [CrossRef]
- Xiong, J.; Kushwaha, S.K.; Liang, T.; Krizan, J.W.; Hirschberger, M.; Wang, W.D.; Cava, R.J.; Ong, N.P. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 2015, 350, 413. [Google Scholar] [CrossRef]
- Xiong, J.; Kushwaha, S.; Krizan, J.; Liang, T.; Cava, R.J.; Ong, N.P. Anomalous conductivity tensor in the Dirac semimetal Na3Bi. Europhys. Lett. 2016, 114, 27002. [Google Scholar] [CrossRef]
- Wang, Z.J.; Weng, H.M.; Wu, Q.S.; Dai, X.; Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys. Rev. B 2013, 88, 125427. [Google Scholar] [CrossRef]
- Borisenko, S.; Gibson, Q.; Evtushinsky, D.; Zabolotnyy, V.; Büchner, B.; Cava, R.J. Experimental realization of a three-dimensional Dirac semimetal. Phys. Rev. Lett. 2014, 113, 27603. [Google Scholar] [CrossRef]
- Liu, Z.K.; Jiang, J.; Zhou, B.; Wang, Z.J.; Zhang, Y.; Weng, H.M.; Prabhakaran, D.; Mo, S.K.; Peng, H.; Dudin, P.; et al. A stable three-dimensional topological Dirac semimetal Cd3As2. Nat. Mater. 2014, 13, 677. [Google Scholar] [CrossRef]
- Neupane, M.; Xu, S.Y.; Sankar, R.; Alidoust, N.; Bian, G.; Liu, C.; Belopolski, I.; Chang, T.R.; Jeng, H.T.; Lin, H.; et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat. Commun. 2014, 5, 3786. [Google Scholar] [CrossRef]
- Liang, T.; Gibson, Q.; Ali, M.N.; Liu, M.H.; Cava, R.J.; Ong, N.P. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat. Mater. 2015, 14, 280. [Google Scholar] [CrossRef]
- Li, C.Z.; Wang, L.X.; Liu, H.W.; Wang, J.; Liao, Z.M.; Yu, D.P. Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires. Nat. Commun. 2015, 6, 10137. [Google Scholar] [CrossRef]
- Li, H.; He, H.T.; Lu, H.Z.; Zhang, H.C.; Liu, H.C.; Ma, R.; Fan, Z.Y.; Shen, S.Q.; Wang, J.N. Negative magnetoresistance in Dirac semimetal Cd3As2. Nat. Commun. 2016, 7, 10301. [Google Scholar] [CrossRef]
- Wang, C.M.; Sun, H.P.; Lu, H.Z.; Xie, X.C. 3D quantum Hall effect of fermi arcs in topological semimetals. Phys. Rev. Lett. 2017, 119, 136806. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Narayan, A.; Lu, S.H.; Zhang, J.L.; Zhang, H.Q.; Ni, Z.L.; Yuan, X.; Liu, Y.W.; Park, J.H.; Zhang, E.Z.; et al. Evolution of Weyl orbit and quantum Hall effect in Dirac semimetal Cd3As2. Nat. Commun. 2017, 8, 1272. [Google Scholar] [CrossRef]
- Huang, S.M.; Xu, S.Y.; Belopolski, I.; Lee, C.C.; Chang, G.Q.; Wang, B.K.; Alidoust, N.; Bian, G.; Neupane, M.; Zhang, C.L.; et al. A Weyl fermion semimetal with surface fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 2015, 6, 7373. [Google Scholar] [CrossRef]
- Lv, B.Q.; Xu, N.; Weng, H.M.; Ma, J.Z.; Richard, P.; Huang, X.C.; Zhao, L.X.; Chen, G.F.; Matt, C.E.; Bisti, F.; et al. Observation of Weyl nodes in TaAs. Nat. Phys. 2015, 11, 724. [Google Scholar] [CrossRef]
- Xu, S.Y.; Belopolski, I.; Sanchez, D.S.; Zhang, C.L.; Chang, G.Q.; Guo, C.; Bian, G.; Yuan, Z.J.; Lu, H.; Chang, T.R.; et al. Experimental discovery of a topological Weyl semimetal state in TaP. Sci. Adv. 2015, 1, e1501092. [Google Scholar] [CrossRef]
- Xu, S.Y.; Belopolski, I.; Alidoust, N.; Neupane, M.; Bian, G.; Zhang, C.L.; Sankar, R.; Chang, G.Q.; Yuan, Z.J.; Lee, C.C.; et al. Discovery of a Weyl fermion semimetal and topological fermi arcs. Science 2015, 349, 613. [Google Scholar] [CrossRef]
- Xu, S.Y.; Alidoust, N.; Belopolski, I.; Yuan, Z.; Bian, G.; Chang, T.R.; Zheng, H.; Strocov, V.N.; Sanchez, D.S.; Chang, G. Discovery of a Weyl fermion state with fermi arcs in niobium arsenide. Nat. Phys. 2015, 11, 748. [Google Scholar] [CrossRef]
- Liu, Z.K.; Yang, L.X.; Sun, Y.; Zhang, T.; Peng, H.; Yang, H.F.; Chen, C.; Zhang, Y.; Guo, Y.F.; Prabhakaran, D.; et al. Evolution of the fermi surface of Weyl semimetals in the transition metal pnictide family. Nat. Mater. 2016, 15, 27. [Google Scholar] [CrossRef]
- Xu, N.; Weng, H.M.; Lv, B.Q.; Matt, C.E.; Park, J.; Bisti, F.; Strocov, V.N.; Gawryluk, D.; Pomjakushina, E.; Conder, K.; et al. Observation of Weyl nodes and fermi arcs in tantalum phosphide. Nat. Commun. 2016, 7, 11006. [Google Scholar] [CrossRef] [PubMed]
- Arnold, F.; Shekhar, C.; Wu, S.C.; Sun, Y.; Dos Reis, R.D.; Kumar, N.; Naumann, M.; Ajeesh, M.O.; Schmidt, M.; Grushin, A.G.; et al. Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP. Nat. Commun. 2016, 7, 11615. [Google Scholar] [CrossRef]
- Soluyanov, A.A.; Gresch, D.; Wang, Z.; Wu, Q.; Troyer, M.; Dai, X.; Bernevig, B.A. Type-II Weyl semimetals. Nature 2015, 527, 495. [Google Scholar] [CrossRef]
- Wang, Z.; Gresch, D.; Soluyanov, A.A.; Xie, W.; Kushwaha, S.; Dai, X.; Troyer, M.; Cava, R.J.; Bernevig, B.A. MoTe2: A type-II Weyl topological metal. Phys. Rev. Lett. 2016, 117, 56805. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Liu, Z.K.; Sun, Y.; Yang, H.F.; Rajamathi, C.R.; Qi, Y.P.; Yang, L.X.; Chen, C.; Peng, H.; Hwang, C.C.; et al. Signature of type-II Weyl semimetal phase in MoTe2. Nat. Commun. 2017, 8, 13973. [Google Scholar] [CrossRef]
- Tamai, A.; Wu, Q.S.; Cucchi, I.; Bruno, F.Y.; Riccò, S.; Kim, T.K.; Hoesch, M.; Barreteau, C.; Giannini, E.; Besnard, C.; et al. Fermi arcs and their topological character in the candidate type-II Weyl semimetal MoTe2. Phys. Rev. X 2016, 6, 31021. [Google Scholar]
- Sun, Y.; Wu, S.C.; Ali, M.N.; Felser, C.; Yan, B.H. Prediction of Weyl semimetal in orthorhombic MoTe2. Phys. Rev. B 2015, 92, 161107. [Google Scholar] [CrossRef]
- Deng, K.; Wan, G.L.; Deng, P.; Zhang, K.N.; Ding, S.J.; Wang, E.Y.; Yan, M.Z.; Huang, H.Q.; Zhang, H.Y.; Xu, Z.L.; et al. Experimental observation of topological fermi arcs in type-II Weyl semimetal MoTe2. Nat. Phys. 2016, 12, 1105. [Google Scholar] [CrossRef]
- Autès, G.; Gresch, D.; Troyer, M.; Soluyanov, A.A.; Yazyev, O.V. Robust type-II Weyl semimetal phase in transition metal diphosphides XP2 (X=Mo, W). Phys. Rev. Lett. 2016, 117, 66402. [Google Scholar] [CrossRef] [PubMed]
- Koepernik, K.; Kasinathan, D.; Efremov, D.V.; Khim, S.; Borisenko, S.; Büchner, B.; Van den Brink, J. TaIrTe4: A ternary type-II Weyl semimetal. Phys. Rev. B 2016, 93, 201101. [Google Scholar] [CrossRef]
- Wu, Y.; Mou, D.; Jo, N.H.; Sun, K.; Huang, L.; Budko, S.L.; Canfield, P.C.; Kaminski, A. Observation of fermi arcs in the type-II Weyl semimetal candidate WTe2. Phys. Rev. B 2016, 94, 121113. [Google Scholar] [CrossRef]
- Ali, M.N.; Xiong, J.; Flynn, S.; Tao, J.; Gibson, Q.D.; Schoop, L.M.; Liang, T.; Haldolaarachchige, N.; Hirschberger, M.; Ong, N.P.; et al. Large, non-saturating magnetoresistance in WTe2. Nature 2014, 514, 205. [Google Scholar] [CrossRef]
- Li, P.; Wen, Y.; He, X.; Zhang, Q.; Xia, C.; Yu, Z.M.; Yang, S.A.; Zhu, Z.; Alshareef, H.N.; Zhang, X.X. Evidence for topological type-II Weyl semimetal WTe2. Nat. Commun. 2017, 8, 2150. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.F.; Zhou, Y.Z.; Yi, W.; Yang, C.L.; Guo, J.; Shi, Y.G.; Zhang, S.; Wang, Z.; Zhang, C.; Jiang, S.; et al. Superconductivity emerging from a suppressed large magnetoresistant state in tungsten ditelluride. Nat. Commun. 2015, 6, 7804. [Google Scholar] [CrossRef] [PubMed]
- Burkov, A.A.; Hook, M.D.; Balents, L. Topological nodal semimetals. Phys. Rev. B 2011, 84, 235126. [Google Scholar] [CrossRef]
- Hosen, M.M.; Dimitri, K.; Belopolski, I.; Maldonado, P.; Sankar, R.; Dhakal, N.; Dhakal, G.; Cole, T.; Oppeneer, P.M.; Kaczorowski, D.; et al. Tunability of the topological nodal-line semimetal phase in ZrSiX-type materials (X=S, Se, Te). Phys. Rev. B 2017, 95, 161101. [Google Scholar] [CrossRef]
- Neupane, M.; Belopolski, I.; Hosen, M.M.; Sanchez, D.S.; Sankar, R.; Szlawska, M.; Xu, S.Y.; Dimitri, K.; Dhakal, N.; Maldonado, P.; et al. Observation of topological nodal fermion semimetal phase in ZrSiS. Phys. Rev. B 2016, 93, 201104. [Google Scholar] [CrossRef]
- Schoop, L.M.; Ali, M.N.; Straßer, C.; Topp, A.; Varykhalov, A.; Marchenko, D.; Duppel, V.; Parkin, S.S.P.; Lotsch, B.V.; Ast, C.R. Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS. Nat. Commun. 2016, 7, 11696. [Google Scholar] [CrossRef]
- Hu, J.; Tang, Z.J.; Liu, J.Y.; Liu, X.; Zhu, Y.L.; Graf, D.; Myhro, K.; Tran, S.; Lau, C.N.; Wei, J.; et al. Evidence of topological nodal-line fermions in ZrSiSe and ZrSiTe. Phys. Rev. Lett. 2016, 117, 16602. [Google Scholar] [CrossRef]
- Takane, D.; Wang, Z.; Souma, S.; Nakayama, K.; Trang, C.X.; Sato, T.; Takahashi, T.; Ando, Y. Dirac-node arc in the topological line-node semimetal HfSiS. Phys. Rev. B 2016, 94, 121108. [Google Scholar] [CrossRef]
- Bian, G.; Chang, T.R.; Sankar, R.; Xu, S.Y.; Zheng, H.; Neupert, T.; Chiu, C.K.; Huang, S.M.; Chang, G.; Belopolski, I.; et al. Topological nodal-line fermions in spin-orbit metal PbTaSe2. Nat. Commun. 2016, 7, 10556. [Google Scholar] [CrossRef]
- Yang, S.Y.; Yang, H.; Derunova, E.; Parkin, S.S.P.; Yan, B.H.; Ali, M.N. Symmetry demanded topological nodal-line materials. Adv. Phys-X 2018, 3, 1414631. [Google Scholar] [CrossRef]
- Kitaev, A. Periodic table for topological insulators and superconductors. AIP Conf. Proc. 2009, 1134, 22–30. [Google Scholar]
- Stone, M.; Chiu, C.K.; Roy, A. Symmetries, dimensions and topological insulators: The mechanism behind the face of the Bott clock. J. Phys. A: Math. Theor. 2010, 44, 45001. [Google Scholar] [CrossRef]
- Chiu, C.K.; Teo, J.C.Y.; Schnyder, A.P.; Ryu, S. Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 2016, 88, 35005. [Google Scholar] [CrossRef]
- Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 2011, 106, 106802. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, T.; Lin, H.; Liu, J.; Duan, W.; Bansil, A.; Fu, L. Topological crystalline insulators in the SnTe material class. Nat. Commun. 2012, 3, 982. [Google Scholar] [CrossRef]
- Tanaka, Y.; Ren, Z.; Sato, T.; Nakayama, K.; Souma, S.; Takahashi, T.; Kouji, S.; Yoichi, A. Experimental realization of a topological crystalline insulator in SnTe. Nat. Phys. 2012, 8, 800–803. [Google Scholar]
- Dziawa, P.; Kowalski, B.; Dybko, K.; Buczko, R.; Szczerbakow, A.; Szot, M.; Lusakowska, E.; Balasubramanian, T.; Wojek, B.M.; Berntsen, M.H.; et al. Topological crystalline insulator states in Pb1−xSnxSe. Nat. Mater. 2012, 11, 1023–1027. [Google Scholar] [PubMed]
- Wang, Z.; Alexandradinata, A.; Cava, R.J.; Bernevig, B.A. Hourglass fermions. Nature 2016, 532, 189–194. [Google Scholar] [PubMed]
- Ma, J.; Yi, C.; Lv, B.; Wang, Z.; Nie, S.; Wang, L.; Kong, L.; Huang, Y.; Richard, P.; Zhang, P.; et al. Experimental evidence of hourglass fermion in the candidate nonsymmorphic topological insulator KHgSb. Sci. Adv. 2017, 3, e1602415. [Google Scholar]
- Liu, C.X.; Zhang, R.X.; VanLeeuwen, B.K. Topological nonsymmorphic crystalline insulators. Phys. Rev. B 2014, 90, 85304. [Google Scholar]
- Fang, C.; Fu, L. New classes of three-dimensional topological crystalline insulators: Nonsymmorphic and magnetic. Phys. Rev. B 2015, 91, 161105. [Google Scholar]
- Shiozaki, K.; Sato, M.; Gomi, K. Z2 topology in nonsymmorphic crystalline insulators: Möbius twist in surface states. Phys. Rev. B 2015, 91, 155120. [Google Scholar] [CrossRef]
- Fang, C.; Fu, L. New classes of topological crystalline insulators having surface rotation anomaly. Sci. Adv. 2019, 5, eaat2374. [Google Scholar]
- Zhang, T.; Yue, C.; Zhang, T.; Nie, S.; Wang, Z.; Fang, C.; Weng, H.; Fang, Z. Topological crystalline insulators with C2 rotation anomaly. Phys. Rev. Res. 2019, 1, 12001. [Google Scholar]
- Bradlyn, B.; Elcoro, L.; Cano, J.; Vergniory, M.G.; Wang, Z.; Felser, C.; Aroyo, M.I.; Bernevig, B.A. Topological quantum chemistry. Nature 2017, 547, 298–305. [Google Scholar]
- Po, H.C.; Vishwanath, A.; Watanabe, H. Symmetry-based indicators of band topology in the 230 space groups. Nat. Commun. 2017, 8, 50. [Google Scholar] [PubMed]
- Zhang, T.; Jiang, Y.; Song, Z.; Huang, H.; He, Y.; Fang, Z.; Weng, H.; Fang, C. Catalogue of topological electronic materials. Nature 2019, 566, 475–479. [Google Scholar]
- Silveirinha, M.G. Proof of the bulk-edge correspondence through a link between topological photonics and fluctuation-electrodynamics. Phys. Rev. X 2019, 9, 11037. [Google Scholar]
- Parameswaransa, S.A.; Wan, Y. Topological insulators turn a corner. Physics 2017, 10, 132. [Google Scholar] [CrossRef]
- Schindler, F.; Cook, A.M.; Vergniory, M.G.; Wang, Z.; Parkin, S.S.P.; Bernevig, B.A.; Neupert, T. Higher-order topological insulators. Sci. Adv. 2018, 4, eaat0346. [Google Scholar]
- Serra-Garcia, M.; Peri, V.; Süsstrunk, R.; Bilal, O.R.; Larsen, T.; Villanueva, L.G.; Huber, S.D. Observation of a phononic quadrupole topological insulator. Nature 2018, 555, 342–345. [Google Scholar] [PubMed]
- Peterson, C.W.; Benalcazar, W.A.; Hughes, T.L.; Bahl, G. A quantized microwave quadrupole insulator with topologically protected corner states. Nature 2018, 555, 346–350. [Google Scholar] [PubMed]
- Imhof, S.; Berger, C.; Bayer, F.; Brehm, J.; Molenkamp, L.W.; Kiessling, T.; Schindler, F.; Lee, C.H.; Greiter, M.; Neupert, T.; et al. Topolectrical-circuit realization of topological corner modes. Nat. Phys. 2018, 14, 925–929. [Google Scholar]
- Xue, H.R.; Yang, Y.H.; Gao, F.; Chong, Y.; Zhang, B. Acoustic higher-order topological insulator on a kagome lattice. Nat. Mater. 2019, 18, 108–112. [Google Scholar]
- Ni, X.; Weiner, M.; Alu, A.; Khanikaev, A.B. Observation of higher-order topological acoustic states protected by generalized chiral symmetry. Nat. Mater. 2019, 18, 113–120. [Google Scholar]
- Noh, J.; Benalcazar, W.A.; Huang, S.; Collins, M.J.; Chen, K.P.; Hughes, T.L.; Rechtsman, M.C. Topological protection of photonic mid-gap defect modes. Nat. Photonics 2018, 12, 408–415. [Google Scholar]
- Fan, H.; Xia, B.; Tong, L.; Zheng, S.; Yu, D. Elastic higher-order topological insulator with topologically protected corner states. Phys. Rev. Lett. 2019, 122, 204301. [Google Scholar] [CrossRef] [PubMed]
- Benalcazar, W.A.; Bernevig, B.A.; Hughes, T.L. Quantized electric multipole insulators. Science 2017, 357, 61–66. [Google Scholar]
- Benalcazar, W.A.; Bernevig, B.A.; Hughes, T.L. Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators. Phys. Rev. B 2017, 96, 245115. [Google Scholar]
- Raab, R.E.; De Lange, O.L. Multipole Theory in Electromagnetism: Classical, Quantum, and Symmetry Aspects, with Applications; OUP: Oxford, UK, 2004. [Google Scholar]
- Mittal, S.; Orre, V.V.; Zhu, G.Y.; Gorlach, M.A.; Poddubny, A.; Hafezi, M. Photonic quadrupole topological phases. Nat. Photonics 2019, 13, 692–696. [Google Scholar]
- He, L.; Addison, Z.; Mele, E.J.; Zhen, B. Quadrupole topological photonic crystals. Nat. Commun. 2020, 11, 3119. [Google Scholar] [PubMed]
- Zhou, X.X.; Lin, Z.K.; Lu, W.X.; Lai, Y.; Hou, B.; Jiang, J.H. Twisted quadrupole topological photonic crystals. Laser Photon. Rev. 2020, 14, 2000010. [Google Scholar] [CrossRef]
- Su, W.P.; Schrieffer, J.R.; Heeger, A.J. Solitons in polyacetylene. Phys. Rev. Lett. 1979, 42, 1698–1701. [Google Scholar]
- Liu, F.; Wakabayashi, K. Novel topological phase with a zero berry curvature. Phys. Rev. Lett. 2017, 118, 76803. [Google Scholar]
- Ezawa, M. Higher-order topological insulators and semimetals on the breathing kagome and pyrochlore lattices. Phys. Rev. Lett. 2018, 120, 026801. [Google Scholar]
- Xie, B.Y.; Wang, H.F.; Wang, H.X.; Zhu, X.Y.; Jiang, J.H.; Lu, M.H.; Chen, Y.F. Second-order photonic topological insulator with corner states. Phys. Rev. B 2018, 98, 205147. [Google Scholar] [CrossRef]
- Chen, X.D.; Deng, W.M.; Shi, F.L.; Zhao, F.L.; Chen, M.; Dong, J.W. Direct observation of corner states in second-order topological photonic crystal slabs. Phys. Rev. Lett. 2019, 122, 233902. [Google Scholar] [CrossRef]
- Xie, B.Y.; Su, G.X.; Wang, H.F.; Su, H.; Shen, X.P.; Zhan, P.; Lu, M.H.; Wang, Z.L.; Chen, Y.F. Visualization of higher-order topological insulating phases in two-dimensional dielectric photonic crystals. Phys. Rev. Lett. 2019, 122, 233903. [Google Scholar] [CrossRef]
- Benalcazar, W.A.; Li, T.H.; Hughes, T.L. Quantization of fractional corner charge in Cn-symmetric higher-order topological crystalline insulators. Phys. Rev. B 2019, 99, 245151. [Google Scholar] [CrossRef]
- Li, M.Y.; Zhirihin, D.; Gorlach, M.; Ni, X.; Filonov, D.; Slobozhanyuk, A.; Alù, A.; Khanikaev, A.B. Higher-order topological states in photonic kagome crystals with longrange interactions. Nat. Photonics 2020, 14, 89–94. [Google Scholar] [CrossRef]
- El Hassan, A.; Kunst, F.K.; Moritz, A.; Andler, G.; Bergholtz, E.J.; Bourennane, M. Corner states of light in photonic waveguides. Nat. Photonics 2019, 13, 697–700. [Google Scholar] [CrossRef]
- Langbehn, J.; Peng, Y.; Trifunovic, L.; Oppen, F.; Brouwer, P.W. Reflection-symmetric second-order topological insulators and superconductors. Phys. Rev. Lett. 2017, 119, 246401. [Google Scholar] [CrossRef]
- Schindler, F.; Wang, Z.; Vergniory, M.G.; Cook, A.M.; Murani, A.; Sengupta, S.; Kasumov, A.Y.; Deblock, R.; Jeon, S.; Drozdov, I.; et al. Higher-order topology in bismuth. Nat. Phys. 2018, 14, 918–924. [Google Scholar] [CrossRef]
- Wang, Z.; Wieder, B.J.; Li, J.; Yan, B.; Bernevig, B.A. Higher-order topology, monopole nodal lines, and the origin of large fermi arcs in transition metal dichalcogenides XTe2 (X= Mo, W). Phys. Rev. Lett. 2019, 123, 186401. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.; Xu, Y.; Song, Z.; Weng, H.; Lu, Y.M.; Fang, C.; Dai, X. Symmetry-enforced chiral hinge states and surface quantum anomalous Hall effect in the magnetic axion insulator Bi2–xSmxSe3. Nat. Phys. 2019, 15, 577–581. [Google Scholar] [CrossRef]
- Xu, Y.; Song, Z.; Wang, Z.; Weng, H.; Dai, X. Higher-order topology of the axion insulator EuIn2As2. Phys. Rev. Lett. 2019, 122, 256402. [Google Scholar] [CrossRef]
- Park, M.J.; Kim, Y.; Cho, G.Y.; Li, S. Higher-order topological insulator in twisted bilayer graphene. Phys. Rev. Lett. 2019, 123, 216803. [Google Scholar]
- Liu, B.; Xian, L.; Mu, H.; Zhao, G.; Liu, Z.; Rubio, A.; Wang, Z.F. Higher-order band topology in twisted Moiré superlattice. Phys. Rev. Lett. 2021, 126, 66401. [Google Scholar] [CrossRef]
- Sheng, X.L.; Chen, C.; Liu, H.; Chen, Z.; Yu, Z.M.; Zhao, Y.X.; Yang, S.A. Two-dimensional second-order topological insulator in graphdiyne. Phys. Rev. Lett. 2019, 123, 256402. [Google Scholar] [CrossRef]
- Lee, E.; Kim, R.; Ahn, J.; Yang, B.J. Two-dimensional higher-order topology in monolayer graphdiyne. npj Quantum Mater. 2020, 5, 1. [Google Scholar]
- Mu, H.; Liu, B.; Hu, T.; Wang, Z.F. Kekule lattice in graphdiyne: Coexistence of phononic and electronic second-order topological insulator. Nano Lett. 2022, 22, 1122–1128. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, G.; Liu, Z.; Wang, Z.F. Two-dimensional quadrupole topological insulator in γ-graphyne. Nano Lett. 2019, 19, 6492–6497. [Google Scholar] [CrossRef] [PubMed]
- Mu, H.; Zhao, G.; Zhang, H.; Wang, Z.F. Antiferromagnetic second-order topological insulator with fractional mass-kink. npj Comput. Mater. 2022, 8, 82. [Google Scholar]
- Hu, T.; Zhang, T.; Mu, H.; Wang, Z.F. Intrinsic second-order topological insulator in two-dimensional covalent organic frameworks. J. Phys. Chem. Lett. 2022, 13, 10905–10911. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Zhang, W.X.; He, X.W.; Wu, S.; Dang, J.; Peng, K.; Song, F.; Yang, L.; Ni, H.; Niu, Z.; et al. Cavity quantum electrodynamics with second-order topological corner state. Laser Photon. Rev. 2020, 14, 1900425. [Google Scholar] [CrossRef]
- Zhang, W.X.; Xie, X.; Hao, H.M.; Dang, J.; Xiao, S.; Shi, S.; Ni, H.; Niu, Z.; Wang, C.; Jin, K.; et al. Low-threshold topological nanolasers based on the second-order corner state. Light Sci Appl 2020, 9, 109. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Y.H.; Lin, Z.K.; Qin, P.; Chen, Q.; Gao, F.; Li, E.; Jiang, J.H.; Zhang, B.; Chen, H. Higher-order topological states in surface-wave photonic crystals. Adv. Sci. 2020, 7, 1902724. [Google Scholar] [CrossRef]
- Luo, X.W.; Zhang, C.W. Higher-order topological corner states induced by gain and loss. Phys. Rev. Lett. 2019, 123, 73601. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, Y.R.; Ai, Q.; Gong, Z.; Kawabata, K.; Ueda, M.; Nori, F. Second-order topological phases in non-Hermitian systems. Phys. Rev. Lett. 2019, 122, 76801. [Google Scholar] [CrossRef] [PubMed]
- Ezawa, M. Magnetic second-order topological insulators and semimetals. Phys. Rev. B 2018, 97, 155305. [Google Scholar] [CrossRef]
- Wei, Q.; Zhang, X.; Deng, W.; Lu, J.; Huang, X.; Yan, M.; Chen, G.; Liu, Z.; Jia, S. Higher-order topological semimetal in acoustic crystals. Nat. Mater. 2021, 20, 812–817. [Google Scholar]
- Wang, H.X.; Lin, Z.K.; Jiang, B.; Guo, G.Y.; Jiang, J.H. Higher-order Weyl semimetals. Phys. Rev. Lett. 2020, 125, 146401. [Google Scholar] [CrossRef]
- Luo, L.; Wang, H.X.; Lin, Z.K.; Jiang, B.; Wu, Y.; Li, F.; Jiang, J.H. Observation of a phononic higher-order Weyl semimetal. Nat. Mater. 2021, 20, 794–799. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, D.; Teo, H.T.; Wang, Q.; Xue, H.; Zhang, B. Higher-order Dirac semimetal in a photonic crystal. Phys. Rev. B 2022, 105, L060101. [Google Scholar] [CrossRef]
- Lin, M.; Hughes, T.L. Topological quadrupolar semimetals. Phys. Rev. B 2018, 98, 241103. [Google Scholar] [CrossRef]
- Ghorashi, S.A.A.; Li, T.; Hughes, T.L. Higher-order Weyl semimetals. Phys. Rev. Lett. 2020, 125, 266804. [Google Scholar] [CrossRef]
- Chen, C.; Zeng, X.T.; Chen, Z.; Zhao, Y.X.; Sheng, X.L.; Yang, S.A. Second-order real nodal-line semimetal in three-dimensional graphdiyne. Phys. Rev. Lett. 2022, 128, 26405. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, J.; Dai, X.; Zhang, S.; Cao, Z.; Xiang, Y. Design of a higher-order nodal-line semimetal in a spring-shaped acoustic topological crystal. Phys. Rev. B 2022, 106, 184101. [Google Scholar] [CrossRef]
- Wang, K.; Dai, J.X.; Shao, L.B.; Yang, S.A.; Zhao, Y.X. Boundary criticality of PT-invariant topology and second-order nodal-line semimetals. Phys. Rev. Lett. 2020, 125, 126403. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Lu, Y. PT-symmetric real Dirac fermions and semimetals. Phys. Rev. Lett. 2017, 118, 56401. [Google Scholar] [CrossRef]
- Ahn, J.; Park, S.; Kim, D.; Kim, Y.; Yang, B.J. Stiefel–Whitney classes and topological phases in band theory. Chin. Phys. B 2019, 28, 117101. [Google Scholar] [CrossRef]
- Ahn, J.; Kim, D.; Kim, Y.; Yang, B.J. Band topology and linking structure of nodal line semimetals with Z2 monopole charges. Phys. Rev. Lett. 2018, 121, 106403. [Google Scholar] [CrossRef]
- Fang, C.; Chen, Y.; Kee, H.Y.; Fu, L. Topological nodal line semimetals with and without spin-orbital coupling. Phys. Rev. B 2015, 92, 081201. [Google Scholar] [CrossRef]
- Liu, F.; Deng, H.Y.; Wakabayashi, K. Helical topological edge states in a quadrupole phase. Phys. Rev. Lett. 2019, 122, 86804. [Google Scholar] [CrossRef]
- Hsu, C.H.; Zhou, X.; Chang, T.R.; Ma, Q.; Gedik, N.; Bansil, A.; Xu, S.Y.; Lin, H.; Fu, L. Topology on a new facet of bismuth. Proc. Natl. Acad. Sci. USA 2019, 116, 13255. [Google Scholar] [CrossRef]
- Choi, Y.B.; Xie, Y.; Chen, C.Z.; Park, J.; Song, S.B.; Yoon, J.; Kim, B.J.; Taniguchi, T.; Watanabe, K.; Kim, J.; et al. Evidence of higher-order topology in multilayer WTe2 from Josephson coupling through anisotropic hinge states. Nat. Mater. 2020, 19, 974. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, R.; Kobayashi, M.; Jiang, Z.; Kuroda, K.; Takahashi, T.; Xu, Z.; Lee, D.; Hirayama, M.; Ochi, M.; Shirasawa, T.; et al. Evidence for a higher-order topological insulator in a three-dimensional material built from van der Waals stacking of bismuth-halide chains. Nat. Mater. 2021, 20, 473. [Google Scholar] [CrossRef] [PubMed]
- Ezawa, M. Topological switch between second-order topological insulators and topological crystalline insulators. Phys. Rev. Lett. 2018, 121, 116801. [Google Scholar] [CrossRef]
- Ren, Y.; Qiao, Z.; Niu, Q. Engineering corner states from two-dimensional topological insulators. Phys. Rev. Lett. 2020, 124, 166804. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Song, Z.; Zhao, J.Z.; Chen, Z.; Yu, Z.M.; Sheng, X.L.; Yang, S.A. Universal approach to magnetic second-order topological insulator. Phys. Rev. Lett. 2020, 125, 56402. [Google Scholar] [CrossRef]
- Zhang, R.X.; Wu, F.; Das, S.S. Möbius insulator and higher-order topology in MnBi2nTe3n+1. Phys. Rev. Lett. 2020, 124, 136407. [Google Scholar] [CrossRef]
- Huang, H.Q.; Liu, F. Structural buckling induced higher-order topology. Natl. Sci. Rev. 2021, 9, nwab170. [Google Scholar] [CrossRef]
- Ezawa, M. Strong and weak second-order topological insulators with hexagonal symmetry and Z3 index. Phys. Rev. B 2018, 97, 241402. [Google Scholar] [CrossRef]
- Liu, J.W.; Hsieh, T.H.; Wei, P.; Duan, W.H.; Moodera, J.; Fu, L. Spin-filtered edge states with an electrically tunable gap in a two-dimensional topological crystalline insulator. Nat. Mater. 2014, 13, 178–183. [Google Scholar] [CrossRef]
- Zeng, Y.J.; Feng, Y.X.; Tang, L.M.; Chen, K.Q. Effect of out-of-plane strain on the phonon structures and anharmonicity of twisted multilayer graphene. Appl. Phys. Lett. 2021, 118, 183103. [Google Scholar] [CrossRef]
- Jiang, J.W.; Park, H.S. Strain tunable phononic topological bandgaps in two-dimensional hexagonal boron nitride. J. Appl. Phys. 2019, 125, 82511. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Zhang, W. Research Progress of Topological Quantum Materials: From First-Order to Higher-Order. Symmetry 2023, 15, 1651. https://doi.org/10.3390/sym15091651
Liu B, Zhang W. Research Progress of Topological Quantum Materials: From First-Order to Higher-Order. Symmetry. 2023; 15(9):1651. https://doi.org/10.3390/sym15091651
Chicago/Turabian StyleLiu, Bing, and Wenjun Zhang. 2023. "Research Progress of Topological Quantum Materials: From First-Order to Higher-Order" Symmetry 15, no. 9: 1651. https://doi.org/10.3390/sym15091651
APA StyleLiu, B., & Zhang, W. (2023). Research Progress of Topological Quantum Materials: From First-Order to Higher-Order. Symmetry, 15(9), 1651. https://doi.org/10.3390/sym15091651