On Ulam Stability with Respect to 2-Norm
Abstract
:1. Introduction
How much an approximate solution to an equation differs from the exact solutions of it?
2. Auxiliary Results
- (i)
- If , then h is a solution to Equation (8).
- (ii)
3. Auxiliary Information on 2-Normed Spaces
4. Stability of Difference and Functional Equations
- (i)
- If , then h is a solution to Equation (8).
- (ii)
5. Stability of Differential and Integral Equations
- (A)
- If and , then φ is a solution of Equation (14).
- (B)
6. Some Consequences
- (i)
- If , then h is a solution to Equation (8).
- (ii)
- (i)
- If , then and are additive functions.
- (ii)
- If , then there are unique additive with
7. Conclusions
Funding
Conflicts of Interest
References
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef]
- Hyers, D.H.; Isac, G.; Rassias, T.M. Stability of Functional Equations in Several Variables; Birkhäuser: Boston, MA, USA, 1998. [Google Scholar]
- Jung, S.-M. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis; Springer: New York, NY, USA, 2011. [Google Scholar]
- Moszner, Z. Stability has many names. Aequ. Math. 2016, 90, 983–999. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Xu, B.; Zhang, W. Stability of functional equations in single variable. J. Math. Anal. Appl. 2003, 288, 852–869. [Google Scholar] [CrossRef]
- Brzdęk, J.; Fošner, A. Remarks on the stability of Lie homomorphisms. J. Math. Anal. Appl. 2013, 400, 585–596. [Google Scholar] [CrossRef]
- Elqorachi, E.; Rassias, M.T. Generalized Hyers-Ulam stability of trigonometric functional equations. Mathematics 2018, 6, 83. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Rassias, T.M. On a modified Hyers-Ulam sequence. J. Math. Anal. Appl. 1991, 158, 106–113. [Google Scholar] [CrossRef]
- Brzdęk, J. Remarks on stability of some inhomogeneous functional equations. Aeq. Math. 2015, 89, 83–96. [Google Scholar] [CrossRef]
- Brzdęk, J.; Eghbali, N. On approximate solutions of some delayed fractional differential equations. Appl. Math. Lett. 2016, 54, 31–35. [Google Scholar] [CrossRef]
- Brzdęk, J.; Popa, D.; Xu, B. Remarks on stability of the linear recurrence of higher order. Appl. Math. Lett. 2010, 23, 1459–1463. [Google Scholar] [CrossRef]
- Jung, S.-M.; Popa, D.; Rassias, M.T. On the stability of the linear functional equation in a single variable on complete metric groups. J. Glob. Optim. 2014, 59, 165–171. [Google Scholar] [CrossRef]
- Xu, B.; Brzdęk, J.; Zhang, W. Fixed point results and the Hyers-Ulam stability of linear equations of higher orders. Pac. J. Math. 2015, 273, 483–498. [Google Scholar] [CrossRef]
- Hayes, W.; Jackson, K.R. A survey of shadowing methods for numerical solutions of ordinary differential equations. Appl. Numer. Math. 2005, 53, 299–321. [Google Scholar] [CrossRef]
- Aoki, T. On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 1950, 2, 64–66. [Google Scholar] [CrossRef]
- Bourgin, D.G. Approximately isometric and multiplicative transformations on continuous function rings. Duke Math. J. 1949, 16, 385–397. [Google Scholar] [CrossRef]
- Gajda, Z. On stability of additive mappings. Int. J. Math. Math. Sci. 1991, 14, 431–434. [Google Scholar] [CrossRef]
- Brzdęk, J.; El-hady, E.-s. On Ulam stability of functional equations in 2-normed spaces—A survey II. Symmetry 2022, 14, 1365. [Google Scholar]
- Rassias, J.M. On approximation of approximately linear mappings by linear mappings. J. Funct. Anal. 1982, 46, 126–130. [Google Scholar] [CrossRef]
- Rassias, J.M. On a new approximation of approximately linear mappings by linear mappings. Discuss. Math. 1985, 7, 193–196. [Google Scholar]
- Bahyrycz, A.; Olko, J. On stability of the general linear equation. Aeq. Math. 2015, 89, 1461–1474. [Google Scholar] [CrossRef]
- Bahyrycz, A.; Olko, J. Hyperstability of general linear functional equation. Aeq. Math. 2016, 90, 527–540. [Google Scholar] [CrossRef]
- Benzaruala, C.; Brzdęk, J.; El-hady, E.; Oubbi, L. On Ulam stability of the inhomogeneous version of the general linear functional equation. Results Math. 2023, 78, 76. [Google Scholar] [CrossRef]
- Benzarouala, C.; Oubbi, L. Ulam-stability of a generalized linear functional equation, a fixed point approach. Aeq. Math. 2020, 94, 989–1000. [Google Scholar] [CrossRef]
- Benzarouala, C.; Oubbi, L. A purely fixed point approach to the Ulam-Hyers stability and hyperstability of a general functional equation. In Ulam Type Stability; Springer Nature: Basel, Switzerland, 2019; pp. 47–56. [Google Scholar]
- Phochai, T.; Saejung, S. The hyperstability of general linear equation via that of Cauchy equation. Aeq. Math. 2019, 93, 781–789. [Google Scholar] [CrossRef]
- Phochai, T.; Saejung, S. Hyperstability of generalised linear functional equations in several variables. Bull. Aust. Math. Soc. 2020, 102, 293–302. [Google Scholar] [CrossRef]
- Zhang, D. On Hyperstability of generalised linear functional equations in several variables. Bull. Aust. Math. Soc. 2015, 92, 259–267. [Google Scholar] [CrossRef]
- Zhang, D. On Hyers-Ulam stability of generalized linear functional equation and its induced Hyers-Ulam programming problem. Aequat. Math. 2016, 90, 559–568. [Google Scholar] [CrossRef]
- Brzdęk, J.; Popa, D.; Xu, B. Selections of set-valued maps satisfying a linear inclusion in a single variable. Nonlinear Anal. 2011, 74, 324–330. [Google Scholar] [CrossRef]
- Piszczek, M. Remark on hyperstability of the general linear equation. Aeq. Math. 2014, 88, 163–168. [Google Scholar] [CrossRef]
- Piszczek, M. Hyperstability of the general linear functional equation. Bull. Korean Math. Soc. 2015, 52, 1827–1838. [Google Scholar] [CrossRef]
- Piszczek, M.; Szczawińska, J. Hyperstability of the Drygas functional equation. J. Funct. Spaces Appl. 2013, 2013, 912718. [Google Scholar] [CrossRef]
- Piszczek, M.; Szczawińska, J. Stability of the Drygas functional equation on restricted domain. Results Math. 2015, 68, 11–24. [Google Scholar] [CrossRef]
- Cho, Y.C.; Rassias, T.M.; Saadati, R. Stability of Functional Equations in Random Normed Spaces; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Alotaibi, A.; Mohiuddine, S.A. On the stability of a cubic functional equation in random 2-normed spaces. Adv. Differ. Equ. 2012, 2012, 39. [Google Scholar] [CrossRef]
- Bota, M.-F.; Micula, S. Ulam–Hyers Stability via Fixed Point Results for Special Contractions in b-Metric Spaces. Symmetry 2022, 14, 2461. [Google Scholar] [CrossRef]
- EL-Fassi, I.-I. New stability results for the radical sextic functional equation related to quadratic mappings in (2,β)-Banach spaces. J. Fixed Point Theory Appl. 2018, 20, 138. [Google Scholar] [CrossRef]
- EL-Fassi, I.I.; Elqorachi, E.; Khodaei, H. A Fixed Point Approach to Stability of k-th Radical Functional Equation in Non-Archimedean (n,β)-Banach Spaces. Bull. Iran. Math. Soc. 2021, 47, 487–504. [Google Scholar] [CrossRef]
- El-hady, E.-S. On stability of the functional equation of p-Wright affine functions in (2,α)-Banach spaces. J. Egypt. Math. Soc. 2019, 27, 21. [Google Scholar] [CrossRef]
- Wongkum, K.; Chaipunya, P.; Kumam, P. The Generalized Ulam-Hyers-Rassias Stability of Quadratic Mappings in Modular Spaces without Δ2-Conditions. J. Funct. Spaces 2015, 2015, 461719. [Google Scholar]
- Aiemsomboon, L.; Sintunavarat, W. On new approximations for generalized Cauchy functional equations using Brzdęk and Ciepliński’s fixed point theorems in 2-Banach spaces. Acta Math. Sci. 2020, 40, 824–834. [Google Scholar] [CrossRef]
- AL-Ali, S.A.; Almahalebi, M.; Elkettani, Y. Stability of a general p-radical functional equation related to additive mappings in 2-Banach spaces. Proyecciones 2021, 40, 49–71. [Google Scholar] [CrossRef]
- Almahalebi, M.; Kabbaj, S. A fixed point approach to stability of the quartic equation in 2-Banach spaces. J. Math. Comput. Sci. 2013, 3, 972–984. [Google Scholar]
- Cho, Y.J.; Park, C.; Eshaghi Gordji, M. Approximate additive and quadratic mappings in 2-Banach spaces and related topics. Int. J. Nonlinear Anal. Appl. 2012, 3, 75–81. [Google Scholar]
- Chung, S.C.; Park, W.G. Hyers-Ulam stability of functional equations in 2-Banach spaces. Int. J. Math. Anal. (Ruse) 2012, 6, 951–961. [Google Scholar]
- Ciepliński, K. Approximate multi-additive mappings in 2-Banach spaces. Bull. Iran. Math. Soc. 2015, 41, 785–792. [Google Scholar]
- Ciepliński, K.; Xu, T.Z. Approximate multi-Jensen and multi-quadratic mappings in 2-Banach spaces. Carpathian J. Math. 2013, 29, 159–166. [Google Scholar] [CrossRef]
- EL-Fassi, I.-I. Approximate solution of radical quartic functional equation related to additive mapping in 2-Banach spaces. J. Math. Anal. Appl. 2017, 455, 2001–2013. [Google Scholar] [CrossRef]
- El-hady, E.-S. On stability of the functional equation of p-Wright affine functions in 2-Banach spaces. In Ulam Type Stability; Springer: Cham, Switzerland, 2019; pp. 131–141. [Google Scholar]
- Gao, J. On the stability of the linear mapping in 2-normed spaces. Nonlinear Funct. Anal. Appl. 2009, 14, 801–807. [Google Scholar]
- Khodaei, H.; Gordji, M.E.; Kim, S.S.; Cho, Y.J. Approximation of radical functional equations related to quadratic and quartic mappings. J. Math. Anal. Appl. 2012, 395, 284–297. [Google Scholar] [CrossRef]
- Park, C.; Gordji, M.E.; Ghaemi, M.B.; Majani, H. Fixed points and approximately octic mappings in non-Archimedean 2-normed spaces. J. Inequal. Appl. 2012, 2012, 289. [Google Scholar] [CrossRef]
- Park, S.; Kim, C. The generalized Hyers-Ulam stability of additive functional inequalities in non-Archimedean 2-normed space. Korean J. Math. 2014, 22, 339–348. [Google Scholar]
- Park, W.G. Approximate additive mappings in 2-Banach spaces and related topics. J. Math. Anal. Appl. 2011, 376, 193–202. [Google Scholar] [CrossRef]
- Sayar, K.Y.N.; Bergam, A. Approximate solutions of a quadratic functional equation in 2-Banach spaces using fixed point theorem. J. Fixed Point Theory Appl. 2020, 22, 3. [Google Scholar] [CrossRef]
- Ebanks, B.; Sahoo, P.; Sander, W. Characterizations of Information Measures; World Scientific: Singapore, 1998. [Google Scholar]
- Popa, D. A property of a functional inclusion connected with Hyers–Ulam stability. J. Math. Inequal. 2009, 4, 591–598. [Google Scholar] [CrossRef]
- Popa, D. Hyers–Ulam–Rassias stability of a linear recurrence. J. Math. Anal. Appl. 2005, 309, 591–597. [Google Scholar] [CrossRef]
- Miura, T.; Miyajima, S.; Takahasi, S.-E. Hyers-Ulam stability of linear differential operator with constant coefficients. Math. Nachr. 2003, 258, 90–96. [Google Scholar] [CrossRef]
- Bahyrycz, A.; Brzdęk, J.; Leśniak, Z. On approximate solutions of the generalized Volterra integral equation. Nonlin. Anal. RWA 2014, 20, 59–66. [Google Scholar] [CrossRef]
- Gähler, S. Lineare 2-normierte Räumen. Math. Nachr. 1964, 28, 1–43. [Google Scholar] [CrossRef]
- Freese, R.W.; Cho, Y.J. Geometry of Linear 2-Normed Spaces; Nova Science Publishers, Inc.: New York, NY, USA, 2001. [Google Scholar]
- Gähler, S. 2-metrisch Räume und ihre topologische Struktur. Math. Nachr. 1963, 26, 115–148. [Google Scholar] [CrossRef]
- Brzdęk, J.; Ciepliński, K. On a fixed point theorem in 2-Banach spaces and some of its applications. Acta Math. Sci. 2018, 38, 377–390. [Google Scholar] [CrossRef]
- Aczél, J. Lectures on Functional Equations and Their Applications; Academic Press: New York, NY, USA, 1966. [Google Scholar]
- Aczél, J.; Dhombres, J. Functional Equations in Several Variables; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Kuczma, M. An Introduction to the Theory of Functional Equations and Inequalities. In Cauchy’s Equation and Jensen’s Inequality; Birkhäuser: Basel, Switzerland, 2009. [Google Scholar]
- Járai, A. Regularity Properties of Functional Equations in Several Variables; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Castillo, E.; Ruiz-Cobo, M.R. Functional Equations and Modelling in Science and Engineering; Marcel Dekker: New York, NY, USA, 1992. [Google Scholar]
- Brzdęk, J.; Ciepliński, K. A fixed point theorem in n-Banach spaces and Ulam stability. J. Math. Anal. Appl. 2019, 470, 632–646. [Google Scholar] [CrossRef]
- Ciepliński, K. On Ulam stability of a functional equation. Res. Math. 2020, 75, 1–11. [Google Scholar] [CrossRef]
- Chen, X.Y.; Song, M.M. Characterizations on isometries in linear n-normed spaces. Nonlinear Anal. 2010, 72, 1895–1901. [Google Scholar] [CrossRef]
- Choy, J.; Chu, H.Y.; Kim, A. A Remark for the Hyers-Ulam Stabilities on n-Banach Spaces. Axioms 2021, 10, 2. [Google Scholar] [CrossRef]
- Chu, H.-Y.; Lee, K.; Park, C.-G. On the Aleksandrov problem in linear n-normed spaces. Nonlinear Anal. 2004, 59, 1001–1011. [Google Scholar]
- Chu, H.-Y.; Kim, A.; Park, J. On the Hyers-Ulam stabilities of functional equations on n-Banach spaces. Math. Nachr. 2016, 289, 1177–1188. [Google Scholar] [CrossRef]
- Misiak, A. n-inner product spaces. Math. Nachr. 1989, 140, 299–319. [Google Scholar] [CrossRef]
- Schwaiger, J. On the existence of m-norms in vector spaces over valued fields. Aeq. Math. 2023. [Google Scholar] [CrossRef]
Value of the Power r | Type of Stability |
---|---|
hyperstability | |
and | stability with uniqueness and the best constant is known |
non-stability (the lack of stability) |
Possible Case | Type of Stability |
---|---|
for | stability with uniqueness |
for and | stability with uniqueness |
for some | non-stability |
for , for some and | stability without uniqueness |
stability with uniqueness | non-stability | stability without uniqueness | |
non-stability | non-stability | non-stability | |
stability without uniqueness | non-stability | stability without uniqueness |
stability with uniqueness | non-stability | |
non-stability | non-stability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brzdęk, J. On Ulam Stability with Respect to 2-Norm. Symmetry 2023, 15, 1664. https://doi.org/10.3390/sym15091664
Brzdęk J. On Ulam Stability with Respect to 2-Norm. Symmetry. 2023; 15(9):1664. https://doi.org/10.3390/sym15091664
Chicago/Turabian StyleBrzdęk, Janusz. 2023. "On Ulam Stability with Respect to 2-Norm" Symmetry 15, no. 9: 1664. https://doi.org/10.3390/sym15091664
APA StyleBrzdęk, J. (2023). On Ulam Stability with Respect to 2-Norm. Symmetry, 15(9), 1664. https://doi.org/10.3390/sym15091664