Design of Active Disturbance Rejection Controller for Trajectory-Following of Autonomous Ground Electric Vehicles
Abstract
:1. Introduction
2. Vehicle-Trajectory-Following Model
3. Active Disturbance Rejection Controller Design
3.1. ADRC Structure
3.2. ADRC Design
4. Simulation and Results
4.1. Double Lane Change Science
4.2. Serpentine Scene
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Parameter | Name | Parameter | Name |
---|---|---|---|
vehicle mass | longitudinal velocity | ||
lateral velocity | yaw angle | ||
front axle lateral force | front wheel steering angle | ||
front axle longitudinal force | rear axle longitudinal force | ||
longitudinal position | rear axle lateral force | ||
moment of inertia | front wheelbase | ||
rear wheelbase | vehicle speed | ||
side-slip angle | lateral force | ||
yaw torque | lateral acceleration | ||
angular velocity | front wheel slip angle | ||
rear wheel slip angle | front wheel slip stiffness | ||
rear wheel slip stiffness | model state error | ||
lateral error | yaw angle error | ||
desire trajectory | tracking signal of tracking differentiator | ||
sampling time | actual error | ||
state estimate of extended state observer | gain of the extended state observer | ||
control gain coefficient | sampling time | ||
state variables | predicted state variables | ||
predicted control input | maximum steering angle | ||
minimum steering angle | maximum tire slip angle | ||
minimum tire slip angle | design parameters | ||
constructor | desired yaw angle | ||
target yaw angle | controlled state variables | ||
estimated disturbance | discrete controlled state variables | ||
tracking signal of tracking differentiator | set value of yaw angle | ||
observer gains | controller parameters |
References
- Deng, H.; Zhao, Y.; Nguyen, A.T.; Huang, C. Fault-tolerant predictive control with deep-reinforcement-learning-based torque distribution for four in-wheel motor drive. IEEE/ASME Trans. Mechatron. 2023, 28, 668–680. [Google Scholar] [CrossRef]
- Yassine, A.; Hossain, M.S.; Muhammad, G.; Guizani, M. Double auction mechanisms for dynamic autonomous electric vehicles energy trading. IEEE Trans. Veh. Technol. 2019, 68, 7466–7476. [Google Scholar] [CrossRef]
- Jin, X.; Wang, J.; He, X.; Yan, Z.; Xu, L.; Wei, C.; Yin, G. Improving vibration performance of electric vehicles based on in-wheel motor-active suspension system via robust finite frequency control. IEEE Trans. Intell. Transp. Syst. 2023, 24, 1631–1643. [Google Scholar] [CrossRef]
- Jin, X.; Wang, J.; Yan, Z.; Xu, L.; Yin, G.; Chen, N. Robust vibration control for active suspension system of in-wheel-motor-driven electric vehicle via μ-synthesis methodology. ASME Trans. J. Dyn. Syst. Meas. Control. 2022, 144, 051007. [Google Scholar] [CrossRef]
- Barari, A.; Saraygord Afshari, S.; Liang, X. Coordinated control for path-following of an autonomous four in-wheel motor drive electric vehicle. Proc. Inst. Mech. Eng. C J. Mech. Eng. 2022, 236, 6335–6346. [Google Scholar] [CrossRef] [PubMed]
- Gözü, M.; Ozkan, B.; Emirler, M.T. Disturbance observer based active independent front steering control for improving vehicle yaw stability and tire utilization. Int. J. Autom. Technol. 2022, 23, 841–854. [Google Scholar] [CrossRef]
- Mousavinejad, E.; Han, Q.; Yang, F.; Zhu, Y.; Vlacic, L. Integrated control of ground vehicles dynamics via advanced terminal sliding mode control. Veh. Syst. Dyn. 2017, 55, 268–294. [Google Scholar] [CrossRef]
- Ghazali, M. Path-following and tire loss investigation of a front in-wheel-drive electric vehicle with off-centre CG. Mech. Mach. Theory. 2023, 189, 105422. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Y.; Li, S.; Tian, Y.; Zhang, N.; Cui, G. New integrated vehicle stability control of active front steering and electronic stability control considering tire force reserve capability. IEEE Trans. Veh. Technol. 2021, 70, 2181–2195. [Google Scholar] [CrossRef]
- Fnadi, M.; Plumet, F.; Benamar, F. Model predictive control based dynamic path tracking of a four-wheel steering mobile robot. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 4–8 November 2019; pp. 4518–4523. [Google Scholar]
- Fnadi, M.; Du, W.; Plumet, F.; Benamar, F. Constrained Model Predictive Control for dynamic path tracking of a bi-steerable rover on slippery grounds. Control Eng. Pract. 2021, 107, 104693. [Google Scholar] [CrossRef]
- Lee, M.Y.; Chen, B.S. Robust H-infinity network observer-based attack-tolerant path tracking control of autonomous ground vehicle. IEEE Access. 2022, 10, 58332–58353. [Google Scholar] [CrossRef]
- Ahmed, M.; El-Gindy, M.; Lang, H. Path-following enhancement of an 8× 8 combat vehicle using active rear axles steering strategies. Proc. Inst. Mech. Eng. K J. Mul. Dyn. 2021, 235, 539–552. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Sentouh, C.; Zhang, H.; Popieul, J.C. Fuzzy static output feedback control for path following of autonomous vehicles with transient performance improvements. IEEE Trans. Intell. Transp. Syst. 2019, 21, 3069–3079. [Google Scholar] [CrossRef]
- Oh, K.; Seo, J. Development of a Sliding-Mode-Control-Based Path-Tracking Algorithm with Model-Free Adaptive Feedback Action for Autonomous Vehicles. Sensors 2022, 23, 405. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Wang, Q.; Yan, Z.; Yang, H. Nonlinear robust control of trajectory-following for autonomous ground electric vehicles with active front steering system. AIMS Math. 2023, 8, 11151–11179. [Google Scholar] [CrossRef]
- Fnadi, M.; Alexandre dit Sandretto, J. Experimental validation of a guaranteed nonlinear model predictive control. Algorithms 2021, 14, 248. [Google Scholar] [CrossRef]
- Han, J. From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 2009, 56, 900–906. [Google Scholar] [CrossRef]
- Lu, W.; Li, Q.; Lu, K.; Lu, Y.; Guo, L.; Yan, W.; Xu, F. Load adaptive PMSM drive system based on an improved ADRC for manipulator joint. IEEE Access 2021, 9, 33369–33384. [Google Scholar] [CrossRef]
- Lin, P.; Wu, Z.; Fei, Z.; Sun, X. A Generalized PID Interpretation for High-Order LADRC and Cascade LADRC for Servo Systems. IEEE Trans. Ind. Electron. 2021, 69, 5207–5214. [Google Scholar] [CrossRef]
- Yuan, C.; Zhou, X.; Ma, Y. DC Bus Voltage Control of Wind Power Inverter Based on First-Order LADRC. IEEE Access 2021, 10, 3263–3274. [Google Scholar] [CrossRef]
- Xia, Y.; Fu, M.; Li, C.; Pu, F.; Xu, Y. Active disturbance rejection control for active suspension system of tracked vehicles with gun. IEEE Trans. Ind. Electron. 2017, 65, 4051–4060. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Song, J.; Li, X.; Duan, B. An active disturbance rejection control strategy for a three-phase isolated matrix rectifier. IEEE Trans. Transport. Electrific. 2021, 8, 820–829. [Google Scholar] [CrossRef]
- Xu, L.; Ma, J.; Guo, D.; Xie, A.; Song, D. Backstepping sliding-mode and cascade active disturbance rejection control for a quadrotor UAV. IEEE/ASME Trans. Mechatron. 2020, 25, 2743–2753. [Google Scholar] [CrossRef]
- Jin, X.; Yang, J.; Xu, L.; Wei, C.; Wang, Z.; Yin, G. Combined Estimation of Vehicle Dynamic State and Inertial Parameter for Electric Vehicles Based on Dual Central Difference Kalman Filter Method. Chin. J. Mech. Eng. 2023, 36, 1–16. [Google Scholar] [CrossRef]
- Baffet, G.; Charara, A.; Lechner, D.; Thomas, D. Experimental evaluation of observers for tire–road forces, sideslip angle and wheel cornering stiffness. Veh. Syst. Dyn. 2008, 46, 501–520. [Google Scholar] [CrossRef]
- Fnadi, M.; Plumet, F.; Benamar, F. Nonlinear tire cornering stiffness observer for a double steering off-road mobile robot. In Proceedings of the International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 7529–7534. [Google Scholar]
Parameter | Scale | Unit |
---|---|---|
1270 | ||
1536.7 | ||
[87,445, 108,533] | ||
[68,446, 89,664] | ||
1.015 | ||
1.895 | ||
0.54 | ||
0.325 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, X.; Lv, H.; He, Z.; Li, Z.; Wang, Z.; Ikiela, N.V.O. Design of Active Disturbance Rejection Controller for Trajectory-Following of Autonomous Ground Electric Vehicles. Symmetry 2023, 15, 1786. https://doi.org/10.3390/sym15091786
Jin X, Lv H, He Z, Li Z, Wang Z, Ikiela NVO. Design of Active Disturbance Rejection Controller for Trajectory-Following of Autonomous Ground Electric Vehicles. Symmetry. 2023; 15(9):1786. https://doi.org/10.3390/sym15091786
Chicago/Turabian StyleJin, Xianjian, Huaizhen Lv, Zhihui He, Zhiwei Li, Zhaoran Wang, and Nonsly Valerienne Opinat Ikiela. 2023. "Design of Active Disturbance Rejection Controller for Trajectory-Following of Autonomous Ground Electric Vehicles" Symmetry 15, no. 9: 1786. https://doi.org/10.3390/sym15091786
APA StyleJin, X., Lv, H., He, Z., Li, Z., Wang, Z., & Ikiela, N. V. O. (2023). Design of Active Disturbance Rejection Controller for Trajectory-Following of Autonomous Ground Electric Vehicles. Symmetry, 15(9), 1786. https://doi.org/10.3390/sym15091786