Dynamical Chiral Symmetry Breaking in Quantum Chromo Dynamics: Delicate and Intricate
Abstract
:1. Introduction
2. How Robust Is DSB in QCD?
2.1. The Nambu–Jona-Lasinio Picture
- In contradistinction to spontaneous symmetry breaking, the mechanism of dynamical symmetry breaking introduces a dichotomous nature for the (would-be) Goldstone bosons; they are not only Goldstone bosons but at the same time bound states of a highly collective nature. This is true for the original picture based on nucleons but, of course, also if one starts with light quarks interacting at the tree-level in a chirally symmetric way, see, e.g., the discussion in [10].
- DSB implies the generation of dynamical masses for originally massless and/or light fermions. This solves the puzzle of why in the quark model for the light quarks the so-called constituent quark masses at the order of ≳350 MeV are required instead of the much smaller current quark masses.
- In contradistinction to non-relativistic superconductivity where Cooper pairs are formed at arbitrary small couplings [9] (NB: As a matter of fact, this statement is only true in the mean-field approximation. When taking into account fluctuations also, a certain minimal coupling is required to form Cooper pairs.), DSB in four spacetime dimensions only takes place if the coupling exceeds a critical value.
2.2. On the Dyson–Schwinger/Bethe–Salpeter Approach in Rainbow-Ladder Truncation
2.3. On the Onset of the Conformal Window
2.4. A Note on Gauge Dependence
3. Correlation Functions in the Yang–Mills Sector
4. Quark Propagator and Quark–Gluon Vertex
4.1. Structure of the Quark–Gluon Vertex
4.2. Dynamical Generation of Scalar and Tensorial Quark–Gluon Interactions
- (i)
- Normalised gluon momentum:
- (ii)
- Averaged quark momentum; , project it transverse to gluon momentum and normalise it
- Tree-level tensor structure (with 1 GeV):, with.Of course, the tree-level tensor structure is allowed in the chirally symmetric phase.
- The further sizeable chirally symmetric tensor structure is given by:, with.
- The one important tensor structure due to (dynamical or explicit) chiral symmetry breaking is a combination of and .
4.3. The Coupled System and Its Lessons for DSB
5. Conclusions and Outlook
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fritzsch, H.; Gell-Mann, M.; Leutwyler, H. Advantages of the Color Octet Gluon Picture. Phys. Lett. B 1973, 47, 365–368. [Google Scholar] [CrossRef]
- Gross, F.; Klempt, E.; Brodsky, S.J.; Buras, A.J.; Burkert, V.D.; Heinrich, G.; Jakobs, K.; Meyer, C.A.; Orginos, K.; Strickland, M.; et al. 50 Years of Quantum Chromodynamics. arXiv 2022, arXiv:2212.11107. [Google Scholar]
- Miransky, V.A. Dynamic Mass Generation and Renormalizations in Quantum Field Theories. Phys. Lett. B 1980, 91, 421–424. [Google Scholar] [CrossRef]
- Fomin, P.I.; Gusynin, V.P.; Miransky, V.A.; Sitenko, Y.A. Dynamical Symmetry Breaking and Particle Mass Generation in Gauge Field Theories. Riv. Nuovo Cimento 1983, 6N5, 1–90. [Google Scholar]
- Miransky, V.A. Dynamical Symmetry Breaking in Quantum Field Theories; World Scientific: Sinagapore, 1994. [Google Scholar]
- Nambu, Y.; Jona-Lasinio, G. Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. 1. Phys. Rev. 1961, 122, 345–358. [Google Scholar] [CrossRef]
- Nambu, Y.; Jona-Lasinio, G. Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity.II. Phys. Rev. 1961, 124, 246–254. [Google Scholar] [CrossRef]
- Bardeen, J.; Cooper, L.N.; Schrieffer, J.R. Microscopic theory of superconductivity. Phys. Rev. 1957, 106, 162. [Google Scholar] [CrossRef]
- Bardeen, J.; Cooper, L.N.; Schrieffer, J.R. Theory of superconductivity. Phys. Rev. 1957, 108, 1175–1204. [Google Scholar] [CrossRef]
- Alkofer, R.; Reinhardt, H. Chiral Quark Dynamics; Lecture Notes in Physics Monographs; Springer: Berlin/Heidelberg, Germany, 1995; Volume 33. [Google Scholar] [CrossRef]
- Roberts, C.D.; Williams, A.G. Dyson-Schwinger equations and their application to hadronic physics. Prog. Part. Nucl. Phys. 1994, 33, 477–575. [Google Scholar] [CrossRef]
- Roberts, C.D.; Schmidt, S.M. Dyson-Schwinger equations: Density, temperature and continuum strong QCD. Prog. Part. Nucl. Phys. 2000, 45, S1–S103. [Google Scholar] [CrossRef]
- Alkofer, R.; von Smekal, L. The Infrared behavior of QCD Green’s functions: Confinement dynamical symmetry breaking, and hadrons as relativistic bound states. Phys. Rept. 2001, 353, 281. [Google Scholar] [CrossRef]
- Maris, P.; Roberts, C.D. Dyson-Schwinger equations: A Tool for hadron physics. Int. J. Mod. Phys. E 2003, 12, 297–365. [Google Scholar] [CrossRef]
- Bashir, A.; Chang, L.; Cloet, I.C.; El-Bennich, B.; Liu, Y.X.; Roberts, C.D.; Tandy, P.C. Collective perspective on advances in Dyson-Schwinger Equation QCD. Commun. Theor. Phys. 2012, 58, 79–134. [Google Scholar] [CrossRef]
- Eichmann, G.; Sanchis-Alepuz, H.; Williams, R.; Alkofer, R.; Fischer, C.S. Baryons as relativistic three-quark bound states. Prog. Part. Nucl. Phys. 2016, 91, 1–100. [Google Scholar] [CrossRef]
- Sanchis-Alepuz, H.; Williams, R. Recent developments in bound-state calculations using the Dyson–Schwinger and Bethe–Salpeter equations. Comput. Phys. Commun. 2018, 232, 1–21. [Google Scholar] [CrossRef]
- Fukuda, R.; Kugo, T. Schwinger-Dyson Equation for Massless Vector Theory and Absence of Fermion Pole. Nucl. Phys. B 1976, 117, 250–264. [Google Scholar] [CrossRef]
- Jain, P.; Munczek, H.J. Calculation of the pion decay constant in the framework of the Bethe-Salpeter equation. Phys. Rev. D 1991, 44, 1873–1879. [Google Scholar] [CrossRef]
- Munczek, H.J.; Jain, P. Relativistic pseudoscalar q anti-q bound states: Results on Bethe-Salpeter wave functions and decay constants. Phys. Rev. D 1992, 46, 438–445. [Google Scholar] [CrossRef]
- Williams, R.; Fischer, C.S.; Heupel, W. Light mesons in QCD and unquenching effects from the 3PI effective action. Phys. Rev. D 2016, 93, 034026. [Google Scholar] [CrossRef]
- Vujinovic, M.; Alkofer, R. Low-energy spectrum of an SU(2) gauge theory with dynamical fermions. Phys. Rev. D 2018, 98, 095030. [Google Scholar] [CrossRef]
- Miramontes, A.S.; Sanchis Alepuz, H.; Alkofer, R. Elucidating the effect of intermediate resonances in the quark interaction kernel on the timelike electromagnetic pion form factor. Phys. Rev. D 2021, 103, 116006. [Google Scholar] [CrossRef]
- Gao, F.; Papavassiliou, J.; Pawlowski, J.M. Fully coupled functional equations for the quark sector of QCD. Phys. Rev. D 2021, 103, 094013. [Google Scholar] [CrossRef]
- Miramontes, A.S.; Alkofer, R.; Fischer, C.S.; Sanchis-Alepuz, H. Electromagnetic and strong isospin breaking in light meson masses. Phys. Lett. B 2022, 833, 137291. [Google Scholar] [CrossRef]
- Cyrol, A.K.; Mitter, M.; Pawlowski, J.M.; Strodthoff, N. Nonperturbative quark, gluon, and meson correlators of unquenched QCD. Phys. Rev. D 2018, 97, 054006. [Google Scholar] [CrossRef]
- Hopfer, M.; Fischer, C.S.; Alkofer, R. Running coupling in the conformal window of large-Nf QCD. JHEP 2014, 11, 035. [Google Scholar] [CrossRef]
- Zierler, F.; Alkofer, R. On correlation functions of gauge theories close to and in the conformal window. 2023; to be published. [Google Scholar]
- DeGrand, T. Lattice tests of beyond Standard Model dynamics. Rev. Mod. Phys. 2016, 88, 015001. [Google Scholar] [CrossRef]
- Witzel, O. Review on Composite Higgs Models. Proc. Sci. 2019, LATTICE2018, 006. [Google Scholar] [CrossRef]
- Gies, H.; Jaeckel, J. Chiral phase structure of QCD with many flavors. Eur. Phys. J. C 2006, 46, 433–438. [Google Scholar] [CrossRef]
- Lee, J.W. Conformal window from conformal expansion. Phys. Rev. D 2021, 103, 076006. [Google Scholar] [CrossRef]
- Curtis, D.C.; Pennington, M.R.; Walsh, D.A. On the gauge dependence of dynamical fermion masses. Phys. Lett. B 1990, 249, 528–530. [Google Scholar] [CrossRef]
- Jia, S.; Pennington, M.R. How gauge covariance of the fermion and boson propagators in QED constrain the effective fermion-boson vertex. Phys. Rev. D 2016, 94, 116004. [Google Scholar] [CrossRef]
- Albino, L.; Bashir, A.; Mizher, A.J.; Raya, A. Electron-photon vertex and dynamical chiral symmetry breaking in reduced QED: An advanced study of gauge invariance. Phys. Rev. D 2022, 106, 096007. [Google Scholar] [CrossRef]
- Guzmán, V.M.B.; Bashir, A. One-loop fermion-photon vertex in arbitrary gauge and dimensions: A novel approach. Phys. Rev. D 2023, 107, 073008. [Google Scholar] [CrossRef]
- Aguilar, A.C.; Binosi, D.; Papavassiliou, J. Yang-Mills two-point functions in linear covariant gauges. Phys. Rev. D 2015, 91, 085014. [Google Scholar] [CrossRef]
- Aguilar, A.C.; Binosi, D.; Papavassiliou, J. Schwinger mechanism in linear covariant gauges. Phys. Rev. D 2017, 95, 034017. [Google Scholar] [CrossRef]
- Napetschnig, M.; Alkofer, R.; Huber, M.Q.; Pawlowski, J.M. Yang-Mills propagators in linear covariant gauges from Nielsen identities. Phys. Rev. D 2021, 104, 054003. [Google Scholar] [CrossRef]
- Fischer, C.S.; Zwanziger, D. Infrared behaviour and running couplings in interpolating gauges in QCD. Phys. Rev. D 2005, 72, 054005. [Google Scholar] [CrossRef]
- Alkofer, R.; Fischer, C.S.; Reinhardt, H.; von Smekal, L. On the infrared behavior of gluons and ghosts in ghost antighost symmetric gauges. Phys. Rev. D 2003, 68, 045003. [Google Scholar] [CrossRef]
- Capri, M.A.L.; Sobreiro, R.F.; Sorella, S.P.; Thibes, R. Renormalizability of a generalized gauge fixing interpolating among the Coulomb, Landau and maximal Abelian gauges. Ann. Phys. 2007, 322, 1776–1789. [Google Scholar] [CrossRef]
- Andraši, A.; Taylor, J.C. Renormalization in a Landau-to-Coulomb interpolating gauge in Yang–Mills theory. Ann. Phys. 2021, 431, 168551. [Google Scholar] [CrossRef]
- Huber, M.Q. Nonperturbative properties of Yang–Mills theories. Phys. Rept. 2020, 879, 1–92. [Google Scholar] [CrossRef]
- Huber, M.Q. Correlation functions of Landau gauge Yang-Mills theory. Phys. Rev. D 2020, 101, 114009. [Google Scholar] [CrossRef]
- Ferreira, M.N.; Papavassiliou, J. Gauge Sector Dynamics in QCD. Particles 2023, 6, 312–363. [Google Scholar] [CrossRef]
- Kern, W.; Huber, M.Q.; Alkofer, R. Spectral dimension as a tool for analyzing nonperturbative propagators. Phys. Rev. D 2019, 100, 094037. [Google Scholar] [CrossRef]
- Fischer, C.S.; Gruter, B.; Alkofer, R. Solving coupled Dyson-Schwinger equations on a compact manifold. Ann. Phys. 2006, 321, 1918–1938. [Google Scholar] [CrossRef]
- Fischer, C.S.; Alkofer, R. Nonperturbative propagators, running coupling and dynamical quark mass of Landau gauge QCD. Phys. Rev. D 2003, 67, 094020. [Google Scholar] [CrossRef]
- Windisch, A. Features of Strong Quark Correlations at Vanishing and Non-Vanishing Density. Ph.D. Thesis, University of Graz, Graz, Austria, 2014. [Google Scholar]
- Hopfer, M.; Windisch, A.; Alkofer, R. The Quark-Gluon Vertex in Landau gauge QCD. Proc. Sci. 2012, ConfinementX, 073. [Google Scholar] [CrossRef]
- Alkofer, R.; Eichmann, G.; Fischer, C.S.; Hopfer, M.; Vujinovic, M.; Williams, R.; Windisch, A. On propagators and three-point functions in Landau gauge QCD and QCD-like theories. Proc. Sci. 2013, QCD-TNT-III, 003. [Google Scholar] [CrossRef]
- Blum, A.L.; Alkofer, R.; Huber, M.Q.; Windisch, A. Three-point vertex functions in Yang-Mills Theory and QCD in Landau gauge. EPJ Web Conf. 2017, 137, 03001. [Google Scholar] [CrossRef]
- París-López, J.; Sanchis-Alepuz, H.; Alkofer, R. On the Dynamic Generation of Kinetic Terms for Mesonic Bound States. Acta Phys. Polon. Supp. 2018, 11, 495–500. [Google Scholar] [CrossRef]
- Gies, H.; Schmieden, R.; Zambelli, L. Interplay of Chiral Transitions in the Standard Model. arXiv 2023, arXiv:2306.05943. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkofer, R. Dynamical Chiral Symmetry Breaking in Quantum Chromo Dynamics: Delicate and Intricate. Symmetry 2023, 15, 1787. https://doi.org/10.3390/sym15091787
Alkofer R. Dynamical Chiral Symmetry Breaking in Quantum Chromo Dynamics: Delicate and Intricate. Symmetry. 2023; 15(9):1787. https://doi.org/10.3390/sym15091787
Chicago/Turabian StyleAlkofer, Reinhard. 2023. "Dynamical Chiral Symmetry Breaking in Quantum Chromo Dynamics: Delicate and Intricate" Symmetry 15, no. 9: 1787. https://doi.org/10.3390/sym15091787
APA StyleAlkofer, R. (2023). Dynamical Chiral Symmetry Breaking in Quantum Chromo Dynamics: Delicate and Intricate. Symmetry, 15(9), 1787. https://doi.org/10.3390/sym15091787