The Riemann–Hilbert Approach to the Higher-Order Gerdjikov–Ivanov Equation on the Half Line
Abstract
:1. Introduction
2. Basic Riemann–Hilbert Problem
2.1. Formulas and Symbols
- denotes the Pauli’s matrix [47];
- Two matrices, , have the matrix commutator ;
- The matrix commutator with , is shown by . After that, is simple to calculate: ;
- The complex conjugate of is denoted by if is a function.
2.2. Lax Pair
2.3. Three Eigenfunctions
- (1)
- ;
- (2)
- The function exhibits analytic properties, and ;
- (3)
- The function exhibits analytic properties, and ;
- (4)
- The function exhibits analytic properties, and ;
- (5)
- The function exhibits analytic properties, and ;
- (6)
- The function exhibits analytic properties, and ;
- (7)
- The function exhibits analytic properties, and .
- (1)
- (2)
- (3)
2.4. Jump Matrix
2.5. Residue Conditions
- (1)
- contains simple zeros (). We assume that () pertains to , and () pertains to .
- (2)
- contains simple zeros (). We assume that ( ) pertains to , and () pertains to .
- (3)
- There are distinctions between the simple zeros of and .
- (1)
- Res =, .
- (2)
- Res =, .
- (3)
- Res =, .
- (4)
- Res =, .
2.6. The Inverse Problem
3. Definition and Properties of Spectral Functions and Riemann–Hilbert Problem
3.1. The Definition of Spectral Functions
- (1)
- For , and are all analytical;
- (2)
- as , ;
- (3)
- , ;
- (4)
- , ;
- (5)
- , and the map , the maps and are presented below
- is a piecewise analytic function.
- fulfills asymptotic properties
- meets the jump condition ,where
- contains simple zeros (). We assume that ( ) belongs to , and () belongs to .
- The simple poles can be found at () in the second column of . The first column of displays simple poles positioned at ().Then, the residue condition is
- (1)
- For , and are analytical;
- (2)
- as , ;
- (3)
- , ;
- (4)
- , ;
- (5)
- , and the map , the maps of are presented below:
- is a piecewise analytic function.
- fulfills asymptotic properties
- meets the jump condition ,where
- contains simple zeros (). We assume that () belongs to , and () belongs to .
- The simple poles can be found at () in the first column of . The second column of displays simple poles positioned at ().Then, the residue condition is
- (1)
- For , and are analytical;
- (2)
- as , ;
- (3)
- , ;
- (4)
- , ;
- (5)
- , and the map , the maps and are presented below
- is a piecewise analytic function.
- fulfills asymptotic properties
- meets the jump condition , ,where
- contains simple zeros (). We assume that () belongs to , and () belongs to .
- The simple poles can be found at () in the first column of . The second column of displays simple pole positions at ( ).Then, the residue condition is
3.2. Riemann–Hilbert Problem
- The function is an analytical function that acts upon sections and has a unit determinant.
- meets the jump condition
- The simple poles can be found at () and () in the second column of . Simple poles can also be found at () and ( ) in the first column of .
- .
- Hypothesis 1 illustrates the residual relationship that possesses.
4. Conclusions and Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fokas, A. A Unified Transform Method for Solving Linear and Certain Nonlinear PDEs. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1997, 453, 1411–1443. [Google Scholar] [CrossRef]
- Dong, H.; Zhang, Y.; Zhang, X. The New Integrable Symplectic Map and the Symmetry of Integrable Nonlinear Lattice Equation. Commun. Nonlinear Sci. 2016, 36, 354–365. [Google Scholar] [CrossRef]
- Fang, Y.; Dong, H.; Hou, Y.; Kong, Y. Frobenius Integrable Decompositions of Nonlinear Evolution Equations with Modified Term. Appl. Math. Comput. 2014, 226, 435–440. [Google Scholar] [CrossRef]
- Fokas, A.; Zakharov, V. Important Developments in Soliton Theory; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Fokas, A. On a Class of Physically Important Integrable Equations. Phys. D Nonlinear Phenom. 1995, 87, 145–150. [Google Scholar] [CrossRef]
- Fokas, A. Integrable nonlinear evolution equations on the half-line. Commun. Math. Soc. Phys. 2002, 230, 1–39. [Google Scholar] [CrossRef]
- Lenells, J. The Derivative Nonlinear Schrödinger Equation on the Half-lLine. Phys. D Nonlinear Phenom. 2008, 237, 3008–3019. [Google Scholar] [CrossRef]
- Lenells, J.; Fokas, A. On a Novel Integrable Generalization of the Nonlinear Schrödinger Equation. Nonlinearity 2009, 22, 709–722. [Google Scholar] [CrossRef]
- Lenells, J.; Fokas, A. An Integrable Generalization of the Nonlinear Schrödinger Equation on the Half-Line and Solitons. Inverse Probl. 2009, 25, 115006. [Google Scholar] [CrossRef]
- Lenells, J. An Integrable Generalization of the Sine-Gordon Equation on the Half-Line. IMA J. Appl. Math. 2011, 76, 554–572. [Google Scholar] [CrossRef]
- Lenells, J. Initial-boundary Value Problems for Integrable Evolution Equations with 3 × 3 Lax Pairs. Phys. D Nonlinear Phenom. 2012, 421, 857–875. [Google Scholar] [CrossRef]
- Lenells, J. The Degasperis-Procesi Equation on the Half-Line. Nonlinear Anal. 2013, 76, 122–139. [Google Scholar] [CrossRef]
- Fokas, A.; Its, A.; Sung, L.Y. The Nonlinear Schrödinger Equation on the Half-Line. Nonlinearity 2005, 18, 1771–1822. [Google Scholar] [CrossRef]
- Fokas, A.; Its, A. The Nonlinear Schrödinger Equation on the Interval. J. Phys. A 2004, 37, 6091–6114. [Google Scholar] [CrossRef]
- Boutet, A.; Monvel, D.; Fokas, A. The mKDV Equation on the Half-Line. J. Inst Math. Jussieu 2004, 3, 139–164. [Google Scholar] [CrossRef]
- Boutet, D.; Monvel, A.; Shepelsky, D. Initial Boundary Value Problem for the MKdV Equation on a Finite Interval. Ann. I Fourier 2004, 54, 1477–1495. [Google Scholar] [CrossRef]
- Monvel, A.; Shepelsky, D. Long Time Asymptotics of the Camassa-Holm Equation on the Half-Line. Ann. Inst. Fourier 2009, 7, 59. [Google Scholar]
- Fan, E. A Family of Completely Integrable Multi-Hamiltonian Systems Explicitly Related to some Celebrated Equations. J. Math. Phys. 2001, 42, 95–99. [Google Scholar] [CrossRef]
- Xu, J.; Fan, E. A Riemann-Hilbert Approach to the Initial-Boundary Problem for Derivative Nonlinear Schrödinger Equation. Acta Math. Sci. 2014, 34, 973–994. [Google Scholar] [CrossRef]
- Xu, J.; Fan, E. Initial-Boundary Value Problem for Integrable Nonlinear Evolution Equation with 3 × 3 Lax Pairs on the Interval. Stud. Appl. Math. 2016, 136, 321–354. [Google Scholar] [CrossRef]
- Chen, M.; Fan, E.; He, J. Riemann-Hilbert Approach and the Soliton Solutions of the Discrete MKdV Equations. Chaos Soliton Fract. 2023, 168, 113209. [Google Scholar] [CrossRef]
- Zhao, P.; Fan, E. A Riemann-Hilbert Method to Algebro-Geometric Solutions of the Korteweg-de Vries Equation. Phys. D Nonlinear Phenom. 2023, 454, 133879. [Google Scholar] [CrossRef]
- Zhang, N.; Xia, T.; Hu, B. A Riemann-Hilbert Approach to the Complex Sharma-Tasso-Olver Equation on the Half Line. Commun. Theor. Phys. 2017, 68, 580. [Google Scholar] [CrossRef]
- Zhang, N.; Xia, T.; Fan, E. A Riemann-Hilbert Approach to the Chen-Lee-Liu Equation on the Half Line. Acta Math. Sci. 2018, 34, 493–515. [Google Scholar] [CrossRef]
- Wen, L.; Zhang, N.; Fan, E. N-Soliton Solution of The Kundu-Type Equation Via Riemann-Hilbert Approach. Acta Math. Sci. 2020, 40, 113–126. [Google Scholar] [CrossRef]
- Li, J.; Xia, T. Application of the Riemann-Hilbert Approach to the Derivative Nonlinear Schrödinger Hierarchy. Acta Math. Sci. 2023, 37, 2350115. [Google Scholar] [CrossRef]
- Hu, B.; Lin, J.; Zhang, L. On the Riemann-Hilbert problem for the integrable three-coupled Hirota system with a 4 × 4 Matrix Lax Pair. Appl. Math. Comput. 2022, 428, 127202. [Google Scholar] [CrossRef]
- Hu, B.; Zhang, L.; Xia, T. On the Riemann-Hilbert Problem of a Generalized Derivative Nonlinear Schrödinger Equation. Commun. Theor. Phys. 2021, 73, 015002. [Google Scholar] [CrossRef]
- Hu, B.; Xia, T. A Fokas Approach to the Coupled Modified Nonlinear Schrödinger Equation on the Half-Line. Math. Methods Appl. Sci. 2008, 41, 5112–5123. [Google Scholar] [CrossRef]
- Hu, B.; Zhang, L.; Xia, T.; Zhang, N. On the Riemann-Hilbert Problem of the Kundu Equation. Appl. Math. Comput. 2020, 381, 125262. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; Hu, B. The Initial-Boundary Value for the Combined Schrödinger and Gerdjikov-Ivanov Equation on the Half-Line via the Riemann-Hilbert Approach. Theor. Math. Phys. 2021, 209, 1537–1551. [Google Scholar] [CrossRef]
- Gerdjikov, V.; Ivanov, M. A Quadratic Pencil of General Type and Nonlinear Evolution Equations. II. Hierarchies of Hamiltonian Structures. Bulg. J. Phys. 1983, 10, 130–143. [Google Scholar]
- Kodama, Y. Optical Solitons in a Monomode Fiber. J. Stat. Phys. 1985, 35, 597–614. [Google Scholar] [CrossRef]
- Pinar, A.; Muslum, O.; Aydin, S.; Mustafa, B.; Sebahat, E. Optical Solitons of Stochastic Perturbed Radhakrishnan-Kundu-Lakshmanan Model with Kerr Law of Self-Phase-Modulation. Mod. Phys. Lett. B 2024, 38, 2450122. [Google Scholar]
- Monika, N.; Shubham, K.; Sachin, K. Dynamical Forms of Various Optical Soliton Solutions and Other Solitons for the New Schrödinger Equation in Optical Fibers Using Two Distinct Efficient Approaches. Mod. Phys. Lett. B 2024, 38, 2450087. [Google Scholar]
- Nikolay, A. Traveling Wave Solutions of the Generalized Gerdjikov-Ivanov Equation. Optik 2020, 219, 165193. [Google Scholar]
- Kaup, D.; Newll, A. An Exact Solution for a Derivative Nonlinear Schrödinger Equation. J. Math. Phys. 1978, 19, 798–801. [Google Scholar] [CrossRef]
- Chen, H.; Lee, Y.; Liu, C. Integrability of nonlinear Hamiltonian systems by inverse scattering method. Phys. Scr. 1979, 20, 490. [Google Scholar] [CrossRef]
- Zou, Z.; Guo, R. The Riemann-Hilbert Approach for the Higher-Order Gerdjikov-Ivanov Equation, Soliton Interactions and Position Shift. Commun. Nonlinear Sci. 2023, 124, 107316. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, Y. High-Order Soliton Matrix For The Third-order Flow Equation Of The Gerdjikov-Ivanov Hierarchy Through The Riemann-hilbert Method. Acta Math. Appl. Sin.-E 2024, 40, 358–378. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, Y.; Xu, S.; Wu, Z.; He, J. The higher order rogue wave solutions of the Gerdjikov-Ivanov equation. Phys. Scr. 2014, 89, 035501. [Google Scholar] [CrossRef]
- Liu, J.; Dong, H.; Fang, Y.; Zhang, Y. The Soliton Solutions for Nonlocal Multi-Component Higher-Order Gerdjikov-Ivanov Equation via Riemann-Hilbert Problem. Fractal Fract. 2024, 8, 177. [Google Scholar] [CrossRef]
- Mjolhus, E. On the Modulational Instability of Hydromagnetic Waves Parallel to the Magnetic Field. J. Plasma Phys. 1976, 16, 321–334. [Google Scholar] [CrossRef]
- Han, M.; Garlow, J.; Du, K.; Cheong, S.; Zhu, Y. Chirality reversal of magnetic solitons in chiral Cr13TaS2. Appl. Phys. Lett. 2023, 123, 022405. [Google Scholar] [CrossRef]
- Zhang, T.; Meng, X.; Song, Y. Global Dynamics for a New High-Dimensional SIR Model with Distributed Delay. Appl. Math. Comput. 2012, 24, 11806–11819. [Google Scholar] [CrossRef]
- Ding, C.; Gao, Y.; Li, L. Breathers and Rogue Waves on the Periodic Background for the Gerdjikov-Ivanov Equation for the Alfvén Waves in an Astrophysical Plasma. Chaos Soliton Fract. 2019, 120, 259–265. [Google Scholar] [CrossRef]
- Pauli, J. On the quantum mechanics of magnetic electrons. Nature 1927, 119, 282. [Google Scholar]
- Fan, E. Integrable Systems of Derivative Nonlinear Schrödinger Type and their Multi-Hamiltonian Structure. J. Phys. A 2001, 34, 513–519. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Zhang, N. The Riemann–Hilbert Approach to the Higher-Order Gerdjikov–Ivanov Equation on the Half Line. Symmetry 2024, 16, 1258. https://doi.org/10.3390/sym16101258
Hu J, Zhang N. The Riemann–Hilbert Approach to the Higher-Order Gerdjikov–Ivanov Equation on the Half Line. Symmetry. 2024; 16(10):1258. https://doi.org/10.3390/sym16101258
Chicago/Turabian StyleHu, Jiawei, and Ning Zhang. 2024. "The Riemann–Hilbert Approach to the Higher-Order Gerdjikov–Ivanov Equation on the Half Line" Symmetry 16, no. 10: 1258. https://doi.org/10.3390/sym16101258
APA StyleHu, J., & Zhang, N. (2024). The Riemann–Hilbert Approach to the Higher-Order Gerdjikov–Ivanov Equation on the Half Line. Symmetry, 16(10), 1258. https://doi.org/10.3390/sym16101258