Symmetry, Asymmetry and Studentized Statistics
Abstract
:1. Introduction
Unfortunately the usual sampling procedures almost never yield rotational symmetry for the normalized vector except in the case .
2. Joint Probability Density Function of and Probability Density Function of
2.1. Joint Probability Density Function of
2.2. Probability Density Function of Student’s Statistic
- If ,
- If ,
- If ,
- If ,
- If ,
2.3. Joint Probability Density Function of
2.4. The Gaussian Case
- If , then
- If , then
3. Symmetry and Studentization
3.1. Symmetric Random Variables
- (i)
- If X and Y are independent random variables, then has a characteristic function .
- (ii)
- If , then has a probability mass function , and its characteristic function is .
- (iii)
- If X and B (B as defined in (ii)) are independent, the characteristic function of is .
- (iv)
- A random variable is symmetric if and only if its characteristic function is .
3.2. An Approximate Joint Probability Density Function of with a Symmetric Parent Distribution
3.3. An Approximate Expression for the Probability Density Function of with a Smooth Symmetric Parent
4. Externally Studentized Statistics Using Spacings of an Exponential Parent
4.1. External Studentization Using the Maximum Likelihood Scale Estimator
4.2. External Studentization Using the Sample Range as a Dispersion Estimator
4.3. Internal Studentization Using Sums of Spacings
- , and ;
- , and ;
- , and .
4.4. Comparing the Locations of Two Exponential Populations with Equal Dispersions
4.5. Analysis of Spacings (ANOSp) for Testing Homogeneity of Locations of Exponential Populations with Equal Dispersions
4.6. Analysis of Spacings (ANOSp) for Testing Homogeneity of Locations of Exponential Populations with Unequal Dispersions
5. Conclusions
- , when the support is the real line;
- , when the support is the half-line (or the reverted exponential when the support is , in which case the pair of sufficient statistics is , and the maximum likelihood estimators of the parameters are and );
- when the support is a segment, in which case the pair of sufficient statistics is and the maximum likelihood estimators of the parameters are and .
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Tables with Critical Values
n | 0.001 | 0.005 | 0.01 | 0.025 | 0.05 | 0.1 | 0.9 | 0.95 | 0.975 | 0.99 | 0.995 | 0.999 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 0.000501 | 0.002513 | 0.005051 | 0.012821 | 0.026316 | 0.055556 | 4.5 | 9.5 | 19.5 | 49.5 | 99.5 | 499.5 |
3 | 0.000222 | 0.001115 | 0.002240 | 0.005666 | 0.011562 | 0.024110 | 1 | 1.614763 | 2.486079 | 4.216991 | 6.168750 | 14.408050 |
4 | 0.000136 | 0.000684 | 0.001373 | 0.003470 | 0.007068 | 0.014677 | 0.5 | 0.75 | 1.067030 | 1.618460 | 2.164490 | 4.047390 |
5 | 0.000096 | 0.000482 | 0.000966 | 0.002441 | 0.004966 | 0.010291 | 0.319126 | 0.462948 | 0.635782 | 0.917745 | 1.179750 | 1.999380 |
6 | 0.000073 | 0.000366 | 0.000735 | 0.001855 | 0.003771 | 0.007805 | 0.228990 | 0.325932 | 0.438821 | 0.616237 | 0.775077 | 1.244660 |
7 | 0.000058 | 0.000292 | 0.000587 | 0.001481 | 0.003010 | 0.006224 | 0.176015 | 0.247467 | 0.328973 | 0.453985 | 0.563222 | 0.874548 |
8 | 0.000048 | 0.000242 | 0.000485 | 0.001224 | 0.002487 | 0.005140 | 0.141563 | 0.197318 | 0.259996 | 0.354495 | 0.435671 | 0.661185 |
9 | 0.000041 | 0.000205 | 0.000411 | 0.001038 | 0.002108 | 0.004354 | 0.117566 | 0.162821 | 0.213143 | 0.288052 | 0.351592 | 0.524816 |
10 | 0.000035 | 0.000177 | 0.000356 | 0.000897 | 0.001822 | 0.003762 | 0.1 | 0.137805 | 0.179488 | 0.240930 | 0.292540 | 0.431222 |
11 | 0.000031 | 0.000156 | 0.000312 | 0.000788 | 0.001599 | 0.003301 | 0.086647 | 0.118930 | 0.154283 | 0.205986 | 0.249079 | 0.363559 |
12 | 0.000028 | 0.000138 | 0.000278 | 0.000700 | 0.001422 | 0.002934 | 0.076193 | 0.104239 | 0.134782 | 0.179165 | 0.215923 | 0.312669 |
13 | 0.000025 | 0.000124 | 0.000249 | 0.000629 | 0.001277 | 0.002634 | 0.067811 | 0.092518 | 0.119300 | 0.158009 | 0.189898 | 0.273188 |
14 | 0.000022 | 0.000112 | 0.002292 | 0.000570 | 0.001157 | 0.002386 | 0.060958 | 0.082974 | 0.106745 | 0.140945 | 0.168995 | 0.241782 |
15 | 0.000021 | 0.000103 | 0.000206 | 0.000520 | 0.001056 | 0.002177 | 0.055261 | 0.075069 | 0.096381 | 0.126926 | 0.151881 | 0.216280 |
16 | 0.000019 | 0.000094 | 0.000189 | 0.000478 | 0.000970 | 0.001999 | 0.050459 | 0.068426 | 0.087699 | 0.115228 | 0.137644 | 0.195213 |
17 | 0.000017 | 0.000087 | 0.000175 | 0.000441 | 0.000896 | 0.001847 | 0.046363 | 0.062774 | 0.080332 | 0.105336 | 0.125636 | 0.177552 |
18 | 0.000016 | 0.000081 | 0.000162 | 0.0004010 | 0.000831 | 0.001714 | 0.042832 | 0.057913 | 0.074011 | 0.096874 | 0.115388 | 0.162561 |
19 | 0.000015 | 0.000076 | 0.000151 | 0.000382 | 0.000775 | 0.001597 | 0.039761 | 0.053694 | 0.068535 | 0.089564 | 0.106553 | 0.149697 |
20 | 0.000014 | 0.000071 | 0.000142 | 0.000357 | 0.000725 | 0.001495 | 0.037067 | 0.05000 | 0.063751 | 0.083191 | 0.098865 | 0.138550 |
21 | 0.000013 | 0.000066 | 0.000133 | 0.000336 | 0.000681 | 0.001404 | 0.034687 | 0.046743 | 0.059538 | 0.077593 | 0.092122 | 0.128812 |
22 | 0.000012 | 0.000063 | 0.000125 | 0.000316 | 0.000642 | 0.001322 | 0.032571 | 0.043851 | 0.055804 | 0.072641 | 0.086166 | 0.120238 |
23 | 0.000012 | 0.000059 | 0.000118 | 0.000299 | 0.000606 | 0.001249 | 0.030679 | 0.041268 | 0.052474 | 0.068232 | 0.080871 | 0.112640 |
24 | 0.000011 | 0.000056 | 0.000112 | 0.000283 | 0.000574 | 0.001183 | 0.028978 | 0.038950 | 0.049488 | 0.064285 | 0.076137 | 0.105864 |
25 | 0.000011 | 0.000053 | 0.000107 | 0.000269 | 0.000545 | 0.001123 | 0.027441 | 0.036857 | 0.046796 | 0.060733 | 0.071880 | 0.099790 |
30 | 0.000008 | 0.000042 | 0.000085 | 0.000213 | 0.000433 | 0.000891 | 0.021568 | 0.028883 | 0.036567 | 0.047281 | 0.055805 | 0.076986 |
50 | 0.000004 | 0.000022 | 0.000045 | 0.000113 | 0.000230 | 0.000472 | 0.011186 | 0.014887 | 0.018732 | 0.024031 | 0.028200 | 0.038399 |
n | i | k | 0.001 | 0.005 | 0.01 | 0.025 | 0.05 | 0.1 | 0.9 | 0.95 | 0.975 | 0.99 | 0.995 | 0.999 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 1 | 3 | 0.340957 | 0.350877 | 0.358697 | 0.375292 | 0.395936 | 0.429336 | 1.49071 | 2.10819 | 2.98142 | 4.71405 | 6.66667 | 14.9071 |
4 | 2 | 4 | 0.271553 | 0.289258 | 0.301567 | 0.325555 | 0.353308 | 0.395822 | 1.79672 | 2.60383 | 3.74135 | 5.99467 | 8.53244 | 19.2387 |
5 | 1 | 4 | 0.451275 | 0.481872 | 0.501286 | 0.536241 | 0.573179 | 0.624337 | 1.79163 | 2.31281 | 2.96466 | 4.08859 | 5.19617 | 9.00251 |
6 | 2 | 5 | 0.404304 | 0.439866 | 0.461814 | 0.500623 | 0.541023 | 0.597081 | 1.93635 | 2.52828 | 3.26727 | 4.54005 | 5.79359 | 10.0999 |
7 | 3 | 6 | 0.373282 | 0.412145 | 0.435759 | 0.477117 | 0.520069 | 0.580165 | 2.03545 | 2.67576 | 3.47458 | 4.84979 | 6.20392 | 10.855 |
8 | 2 | 6 | 0.495362 | 0.540184 | 0.566193 | 0.610203 | 0.654555 | 0.715025 | 1.93923 | 2.40243 | 2.94501 | 3.81446 | 4.6136 | 7.09137 |
9 | 3 | 7 | 0.469472 | 0.516524 | 0.543743 | 0.589912 | 0.636674 | 0.700813 | 2.00248 | 2.49299 | 3.0672 | 3.98691 | 4.83202 | 7.4518 |
10 | 4 | 8 | 0.449604 | 0.498404 | 0.526618 | 0.574574 | 0.623311 | 0.690388 | 2.05194 | 2.56382 | 3.1628 | 4.12196 | 5.00318 | 7.73456 |
11 | 3 | 8 | 0.540956 | 0.591963 | 0.620843 | 0.669181 | 0.717526 | 0.782997 | 1.96377 | 2.36465 | 2.81547 | 3.50589 | 4.11369 | 5.88409 |
12 | 4 | 9 | 0.523183 | 0.575748 | 0.605564 | 0.655587 | 0.70575 | 0.773818 | 1.99983 | 2.41515 | 2.88203 | 3.59686 | 4.22604 | 6.05843 |
13 | 5 | 10 | 0.508582 | 0.562481 | 0.593100 | 0.644558 | 0.696248 | 0.766474 | 2.02986 | 2.4572 | 2.93749 | 3.67270 | 4.31974 | 6.20397 |
14 | 4 | 10 | 0.580715 | 0.63532 | 0.665943 | 0.716882 | 0.767472 | 0.835382 | 1.95716 | 2.30928 | 2.6942 | 3.26553 | 3.75377 | 5.11685 |
15 | 5 | 11 | 0.567344 | 0.623225 | 0.654616 | 0.706903 | 0.758895 | 0.828738 | 1.98074 | 2.34184 | 2.73646 | 3.32208 | 3.82248 | 5.21933 |
16 | 6 | 12 | 0.555921 | 0.612927 | 0.644989 | 0.698448 | 0.751649 | 0.823149 | 2.00113 | 2.36998 | 2.7730 | 3.37101 | 3.88193 | 5.30806 |
17 | 5 | 12 | 0.61511 | 0.672086 | 0.703832 | 0.756351 | 0.808153 | 0.877114 | 1.94147 | 2.25603 | 2.59269 | 3.08098 | 3.48921 | 4.59421 |
18 | 6 | 13 | 0.604516 | 0.662577 | 0.694965 | 0.748586 | 0.801505 | 0.871973 | 1.95825 | 2.27896 | 2.62214 | 3.11981 | 3.53583 | 4.66184 |
19 | 7 | 14 | 0.595226 | 0.654259 | 0.687218 | 0.741813 | 0.795718 | 0.86751 | 1.97312 | 2.29927 | 2.64823 | 3.15422 | 3.57717 | 4.72183 |
20 | 6 | 14 | 0.645159 | 0.703758 | 0.736231 | 0.789683 | 0.842074 | 0.911308 | 1.92354 | 2.2086 | 2.50871 | 2.93625 | 3.28769 | 4.21667 |
21 | 7 | 15 | 0.636466 | 0.696005 | 0.729022 | 0.783394 | 0.836703 | 0.907156 | 1.93617 | 2.22574 | 2.53055 | 2.96473 | 3.32158 | 4.26483 |
22 | 8 | 16 | 0.628699 | 0.689089 | 0.722597 | 0.777795 | 0.831926 | 0.903471 | 1.94757 | 2.24118 | 2.555023 | 2.9904 | 3.35216 | 4.3083 |
23 | 7 | 16 | 0.671706 | 0.731426 | 0.764359 | 0.81832 | 0.870914 | 0.939971 | 1.90572 | 2.16709 | 2.43863 | 2.81995 | 3.12915 | 3.93126 |
24 | 8 | 17 | 0.664389 | 0.724931 | 0.758334 | 0.813078 | 0.866443 | 0.936514 | 1.91563 | 2.18046 | 2.45556 | 2.84183 | 3.15503 | 3.96745 |
25 | 9 | 18 | 0.657759 | 0.719053 | 0.752883 | 0.80834 | 0.862405 | 0.933397 | 1.92469 | 2.19266 | 2.47102 | 2.86182 | 3.17867 | 4.00052 |
30 | 10 | 21 | 0.711262 | 0.772902 | 0.806614 | 0.861427 | 0.914346 | 0.98310 | 1.87984 | 2.10779 | 2.33984 | 2.65864 | 2.91187 | 3.55044 |
50 | 16 | 34 | — | 0.885094 | 0.917836 | 0.970073 | 1.01943 | 1.082080 | 1.79297 | 1.95205 | 2.10773 | 2.31277 | 2.46933 | 2.84359 |
References
- Student. The probable error of a mean. Biometrika 1908, 6, 1–25. [Google Scholar] [CrossRef]
- Geary, R.C. Distribution of Student’s ratio for nonnormal samples. Suppl. J. R. Stat. Soc. 1936, 3, 178–184. [Google Scholar] [CrossRef]
- Darmois, G. Analyse générale des liaisons stochastiques: Étude particuière de l’analyse factorielle lineéaire. Rev. L’Institut Int. Stat./Rev. Int. Stat. Inst. 1953, 21, 2–8. [Google Scholar] [CrossRef]
- Skitovich, V.P. Linear forms of independent random variables and the normal distribution law. Izv. Akad. Nauk SSSR Ser. Mat. 1954, 18, 185–200, (English Translation Sel. Transl. Math. Stat. Probab. 1962, 2, 211–218). [Google Scholar]
- Koopman, B.O. On distributions admitting a sufficient statistic. Trans. Am. Math. Soc. 1936, 39, 399–409. [Google Scholar] [CrossRef]
- Darmois, G. Sur les lois de probabilités à estimation exhaustive. Comptes Rendus L’Acad. Sci. Paris 1935, 200, 1265–1266. [Google Scholar]
- Pitman, E. Sufficient statistics and intrinsic accuracy. Math. Proc. Camb. Philos. Soc. 1936, 32, 567–579. [Google Scholar] [CrossRef]
- Logan, B.F.; Mallows, C.L.; Rice, S.O.; Shepp, L.A. Limit distributions of self-normalized sums. Ann. Probab. 1973, 1, 788–809. [Google Scholar] [CrossRef]
- Peña, V.H.D.L.; Lai, T.L.; Shao, Q.M. Self-Normalized Processes. Limit Theory and Statistical Applications; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Efron, B. Student’s t-test under symmetry conditions. J. Am. Stat. Assoc. 1969, 64, 1278–1302. [Google Scholar] [CrossRef]
- Hendriks, H.W.M.; Ijzerman-Boon, P.C.; Klaassen, C.A.J. Student’s t-statistic under unimodal densities. Austrian J. Stat. 2006, 35, 131–141. [Google Scholar] [CrossRef]
- Perlo, V. On the distribution of Student’s ratio for samples of three drawn from the rectangular distribution. Biometrika 1933, 25, 203–204. [Google Scholar] [CrossRef]
- Pexider, J.V. Notiz über Funkcionaltheoreme. Monatsh. Math. Phys. 1903, 14, 293–301. [Google Scholar] [CrossRef]
- David, H.A. Order Statistics; Wiley: New York, NY, USA, 1981. [Google Scholar]
- Satterthwaite, F.E. An approximate distribution of estimates of variance components. Biom. Bull. 1946, 2, 110–114. [Google Scholar] [CrossRef]
- van Zwet, W. Convex Transformations of Random Variables, 7th ed.; Mathematical Centre: Amsterdam, The Netherlands, 1964. [Google Scholar]
- van Zwet, W. Convex transformations: A new approach to skewness and kurtosis. Statist. Neerl. 1964, 18, 433–441. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, 8th ed.; Dover: New York, NY, USA, 1972. [Google Scholar]
- Slutsky, E. Über stochastische Asymptoten und Grenzwerte. Metron 1964, 5, 3–89. [Google Scholar]
- Hampel, F.R. Contributions to the Theory of Robust Estimation. Ph.D. Thesis, University of California, Berkeley, CA, USA, 1986. [Google Scholar]
- Ronchetti, E. The main contributions of robust statistics to statistical science and a new challenge. Metron 2021, 79, 127–135. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Kamper, F.; Beirlant, J. Outlier detection based on extreme value theory and applications. Scand. J. Stat. 2024, 50, 1466–1502. [Google Scholar] [CrossRef]
- Basu, D. On statistics independent of a complete sufficient statistic. Sankhyā Indian J. Stat. 1955, 15, 377–380. [Google Scholar] [CrossRef]
- Brilhante, M.F.; Kotz, S. Infinite divisibility of the spacings of a Kotz–Kozubowski–Podgórski generalized Laplace model. Stat. Probab. Lett. 2008, 78, 2433–2436. [Google Scholar] [CrossRef]
- Hotelling, H. The behavior of some standard statistical tests under nonstandard conditions. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability (Volume 1: Contributions to the Theory of Statistics); Neyman, J., Ed.; University of California Press: Berkeley, CA, USA, 1961; pp. 319–359. [Google Scholar]
- Lehmann, E.L. “Student” and small-sample theory. Stat. Sci. 1999, 14, 418–426. [Google Scholar] [CrossRef]
Sum of Spacings | df | Mean of Sum of Spacings | F-Statistic |
---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brilhante, M.d.F.; Pestana, D.; Rocha, M.L. Symmetry, Asymmetry and Studentized Statistics. Symmetry 2024, 16, 1297. https://doi.org/10.3390/sym16101297
Brilhante MdF, Pestana D, Rocha ML. Symmetry, Asymmetry and Studentized Statistics. Symmetry. 2024; 16(10):1297. https://doi.org/10.3390/sym16101297
Chicago/Turabian StyleBrilhante, Maria de Fátima, Dinis Pestana, and Maria Luísa Rocha. 2024. "Symmetry, Asymmetry and Studentized Statistics" Symmetry 16, no. 10: 1297. https://doi.org/10.3390/sym16101297
APA StyleBrilhante, M. d. F., Pestana, D., & Rocha, M. L. (2024). Symmetry, Asymmetry and Studentized Statistics. Symmetry, 16(10), 1297. https://doi.org/10.3390/sym16101297