Linear Arrangement of Euler Sums with Multiple Argument
Abstract
:1. Introduction and Background
2. The Main Results
3. Illustrative Examples of Euler Harmonic Sums
4. Concluding Remarks
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flajolet, P.; Salvy, B. Euler sums and contour integral representations. Exp. Math. 1998, 7, 15–35. [Google Scholar] [CrossRef]
- Srivastava, H.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier, Inc.: Amsterdam, The Netherland, 2012; p. xvi+657. ISBN 978-0-12-385218-2. [Google Scholar]
- Borwein, J.M.; Crandall, R.E. Closed forms: What they are and why we care. Not. Am. Math. Soc. 2013, 60, 50–65. [Google Scholar] [CrossRef]
- Euler, L. Opera Omnia; Series 1; Teubner: Berlin, Germany, 1917; Volume AT, pp. 217–267. [Google Scholar]
- Borwein, D.; Borwein, J.M.; Girgensohn, R. Explicit evaluation of Euler sums. Proc. Edinb. Math. Soc. 1995, 38, 277–294. [Google Scholar] [CrossRef]
- Sitaramachandrarao, R. A Formula of S. Ramanujan. J. Number Theory 1987, 25, 1–19. [Google Scholar] [CrossRef]
- Alzer, A.; Choi, J. Four parametric linear Euler sums. J. Math. Anal. Appl. 2020, 484, 123661. [Google Scholar] [CrossRef]
- Choi, J.; Srivastava, H.M. Explicit evaluation of Euler and related sums. Ramanujan J. 2005, 10, 51–70. [Google Scholar] [CrossRef]
- Sofo, A.; Nimbran, A.S. Euler sums and integral connections. Mathematics 2019, 7, 833. [Google Scholar] [CrossRef]
- Sofo, A. General order Euler sums with rational argument. Integral Transform. Spec. Funct. 2019, 30, 978–991. [Google Scholar] [CrossRef]
- Sofo, A. Reciprocal argument Euler sum identities. 2024; submitted. [Google Scholar]
- Sofo, A. General order Euler sums with multiple argument. J. Number Theory 2018, 189, 255–271. [Google Scholar] [CrossRef]
- Sofo, A.; Choi, J. Extension of the four Euler sums being linear with parameters and series involving the zeta functions. J. Math. Anal. Appl. 2022, 515, 126370. [Google Scholar] [CrossRef]
- Sofo, A.; Nimbran, A.S. Euler-like sums via powers of log, arctan and arctanh functions. Integral Transform. Spec. Funct. 2020, 31, 966–981. [Google Scholar] [CrossRef]
- Li, C.; Chu, W. Gauss’ Second Theorem for 2F1(1/2)-Series and Novel Harmonic Series Identities. Mathematics 2024, 12, 1381. [Google Scholar] [CrossRef]
- Chen, K.-W. On Some General Tornheim-Type Series. Mathematics 2024, 12, 1867. [Google Scholar] [CrossRef]
- Sofo, A.; Batir, N. Parameterized families of polylog integrals. Constuctive Math. Anal. 2021, 4, 400419. [Google Scholar] [CrossRef]
- Sofo, A. Generalization of the Flajolet Salvy identities. 2024; submitted. [Google Scholar]
- Kölbig, K.S. The polygamma function ψk(x) for x = and x = . J. Comput. Appl. Math. 1996, 75, 43–46. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sofo, A. Linear Arrangement of Euler Sums with Multiple Argument. Symmetry 2024, 16, 1322. https://doi.org/10.3390/sym16101322
Sofo A. Linear Arrangement of Euler Sums with Multiple Argument. Symmetry. 2024; 16(10):1322. https://doi.org/10.3390/sym16101322
Chicago/Turabian StyleSofo, Anthony. 2024. "Linear Arrangement of Euler Sums with Multiple Argument" Symmetry 16, no. 10: 1322. https://doi.org/10.3390/sym16101322
APA StyleSofo, A. (2024). Linear Arrangement of Euler Sums with Multiple Argument. Symmetry, 16(10), 1322. https://doi.org/10.3390/sym16101322