On Fractional Operators Involving the Incomplete Mittag-Leffler Matrix Function and Its Applications
Abstract
:1. Introduction
2. Basic Definitions and Preliminaries
3. Incomplete Matrix ML Functions
- (i)
- ,
- (ii)
- .
- (i)
- Taking α and in (ii), we obtain
- (ii)
- Using in Theorem 3, we obtain
- (a)
- (b)
4. Some Integral Transforms of Matrix Incomplete ML Function
- (i)
- If putting and in (36), we obtain
5. Fractional Calculus Operators with Incomplete Matrix ML Functions
6. Application to the Solution of Fractional Kinetic Equation
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mittag-Leffler, G.M. Sur la nouvelle function Eα(x). C. R. Acad. Sci. Paris 1903, 137, 554–558. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Applied Mathematics Series 55, Ninth Printing; Reprint of the 1972 Edition; National Bureau of Standards: Washington, DC, USA, 1972; Dover Publications, Inc.: New York, NY, USA, 1992. [Google Scholar]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Shukla, A.K.; Prajapati, J.C. On a generalized Mittag-Leffler function and its properties. J. Math. Anal. Appl. 2007, 336, 797–811. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Saigo, M.; Saxena, R.K. Generalized Mittag-Leffler function and generalized fractional calculus operators. Integral Transform. Spec. Funct. 2004, 15, 31–49. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Saigo, M.; Saxena, R.K. Solution of Volterra integro-differential equations with generalized Mittag-Leffler function in the Kernels. J. Integral Equ. Appl. 2002, 14, 377–396. [Google Scholar] [CrossRef]
- Paneva-Konovska, J. The convergence of series in multi-index Mittag-Leffler functions. Integral Transform. Spec. Funct. 2012, 23, 207–221. [Google Scholar] [CrossRef]
- Parmar, R.K. A class of extended Mittag Leffler functions and their properties related to integral transforms and fractional calculus. Mathematics 2015, 3, 1069–1082. [Google Scholar] [CrossRef]
- Saxena, R.K.; Saigo, M. Certain properties of fractional calculus operators associated with generalized Mittag-Leffler function. Fract. Calc. Appl. Anal. 2005, 8, 141–154. [Google Scholar]
- Gorenflo, R.; Kilbas, A.; Mainardi, F.; Rogosin, S. Mittag- Leffler Function, Related Topics and Applications; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Haubold, H.J.; Mathai, A.M.; Saxena, R.K. Mittag-Leffler function and their applications. J. Appl. Math. 2011, 2011, 1–51. [Google Scholar] [CrossRef]
- Haubold, H.J.; Mathai, A.M. The fractional kinetic equation and thermonuclear functions. Astrophys. Space Sci. 2000, 327, 53–63. [Google Scholar] [CrossRef]
- Bakhet, A.; Jiao, Y.; He, F.L. On the Wright hypergeometric matrix functions and their fractional calculus. Integral Transform. Spec. Funct. 2019, 30, 138–156. [Google Scholar] [CrossRef]
- Bakhet, A.; Zayed, M. Incomplete exponential type of R-matrix functions and their properties. AIMS Math. 2023, 8, 26081–26095. [Google Scholar] [CrossRef]
- Jódar, L.; Cortés, J.C. On the hypergeometric matrix Function. J. Comput. Appl. Math. 1998, 99, 205–217. [Google Scholar] [CrossRef]
- Jódar, L.; Cortés, J.C. Some properties oF Gamma and Beta matrix Functions. Appl. Math. Lett. 1998, 11, 89–93. [Google Scholar] [CrossRef]
- Goyal, R.; Agarwal, P.; Oros, I.G.; Jain, S. Extended Beta and Gamma Matrix Functions via 2-Parameter Mittag-LeFFler Matrix Function. Mathematics 2022, 10, 892. [Google Scholar] [CrossRef]
- Cuchta, T.; Grow, D.; Wintz, N. Discrete matrix hypergeometric functions. J. Math. Anal. Appl. 2023, 518, 126716. [Google Scholar] [CrossRef]
- Garrappa, R.; Popolizio, M. On the use of matrix functions for fractional partial differential equations. Math. Comput. Simul. 2011, 81, 1045–1056. [Google Scholar] [CrossRef]
- Popolizio, M. Numerical solution of multiterm fractional differential equations using the matrix Mittag-Leffler functions. Mathematics 2018, 1, 7. [Google Scholar] [CrossRef]
- Garrappa, R.; Popolizio, M. Computing the matrix Mittag-Leffler function with applications to fractional calculus. J. Sci. Comput. 2018, 77, 129–153. [Google Scholar] [CrossRef]
- Pal, A.; Jatav, V.K.; Shukla, A.K. Matrix analog of the four-parameter Mittag-Leffler function. Math. Meth. Appl. Sci. 2023, 46, 15094–15106. [Google Scholar] [CrossRef]
- Abdalla, M. Special matrix functions: Characteristics, achievements and future directions. Linear Multilinear Algebra 2020, 68, 1–28. [Google Scholar] [CrossRef]
- Abdalla, M. On the incomplete hypergeometric matrix functions. Ramanujan J. 2017, 43, 663–678. [Google Scholar] [CrossRef]
- Akel, M.; Bakhet, A.; Abdalla, M.; He, F. On degenerate gamma matrix functions and related functions. Linear Multilinear Algebra 2023, 71, 673–691. [Google Scholar] [CrossRef]
- Bakhet, A.; He, F.; Yu, M. On the matrix version of extended Bessel functions and its application to matrix differential equations. Linear Multilinear Algebra 2022, 70, 5661–5680. [Google Scholar] [CrossRef]
- Hidan, H.; Bakhet, A.; Abd-Elmageed, H.; Abdalla, M. Matrix-valued hypergeometric Appell-type polynomials. Electron. Res. Arch. 2022, 30, 2964–2980. [Google Scholar] [CrossRef]
- Zou, C.Y.; Bakhet, A.; He, F. On the Matrix Versions of Incomplete Extended Gamma and Beta Functions and Their Applications for the Incomplete Bessel Matrix Functions. Complexity 2021, 2021, 5586021. [Google Scholar] [CrossRef]
- Atangana, A. Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon & Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Saxena, R.K.; Kalla, S.L. On the solutions of certain fractional kinetic equations. Appl. Math. Comput. 2008, 199, 504–511. [Google Scholar] [CrossRef]
- Wiman, A. Aber den Fundamentalsatz in der Teorie der Funktionen Ea(x). Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
- Diethelm, K. The Analysis of Fractional Differential Equations; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2010; Volume 2004. [Google Scholar]
- Habenom, H.; Suthar, D.L.; Gebeyehu, M. Application of Laplace Transform on Fractional Kinetic Equation Pertaining to the Generalized Galué Type Struve Function. Adv. Math. Phys. 2019, 2019, 5074039. [Google Scholar] [CrossRef]
- Suthar, L.D.; Purohit, S.D.; Araci, S. Solution of Fractional Kinetic Equations Associated with the p,q-Mathieu-Type Series. Discret. Dyn. Nat. Soc. 2020, 8645161. [Google Scholar] [CrossRef]
- Saichev, A.I.; Zaslavsky, G.M. Fractional kinetic equations: Solutions and applications. Chaos 1997, 7, 753–764. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Agarwal, P.; Chand, M.; Jain, S. Certain fractional kinetic equations involving generalized k-Bessel function. Trans. A Razmadze Math. Inst. 2018, 172, 559–570. [Google Scholar] [CrossRef]
- Abdalla, M.; Akel, M. Contribution of Using Hadamard Fractional Integral Operator via Mellin Integral Transform for Solving Certain Fractional Kinetic Matrix Equation. Fractal Fract. 2022, 6, 305. [Google Scholar] [CrossRef]
- Hidan, M.; Akel, M.; Abd-Elmageed, H.; Abdalla, M. Solution of fractional Kinetic equations involving of extended (k, τ)- Gauss hypergeometric matrix functions. AIMS Math. 2022, 7, 14474–14491. [Google Scholar] [CrossRef]
- Nisar, K.S.; Purohit, S.D.; Mondal, S.R. Generalized fractional kinetic equations involving generalized Struve function of the first kind. J. King Saud. Univ. Sci. 2016, 28, 167–171. [Google Scholar] [CrossRef]
- Nisar, K.S.; Belgacem, F.B.M. Dynamic k-Struve Sumudu solutions for fractional kinetic equations. Adv. Differ. Equ. 2017, 2017, 340. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakhet, A.; Hussain, S.; Zayed, M. On Fractional Operators Involving the Incomplete Mittag-Leffler Matrix Function and Its Applications. Symmetry 2024, 16, 963. https://doi.org/10.3390/sym16080963
Bakhet A, Hussain S, Zayed M. On Fractional Operators Involving the Incomplete Mittag-Leffler Matrix Function and Its Applications. Symmetry. 2024; 16(8):963. https://doi.org/10.3390/sym16080963
Chicago/Turabian StyleBakhet, Ahmed, Shahid Hussain, and Mohra Zayed. 2024. "On Fractional Operators Involving the Incomplete Mittag-Leffler Matrix Function and Its Applications" Symmetry 16, no. 8: 963. https://doi.org/10.3390/sym16080963
APA StyleBakhet, A., Hussain, S., & Zayed, M. (2024). On Fractional Operators Involving the Incomplete Mittag-Leffler Matrix Function and Its Applications. Symmetry, 16(8), 963. https://doi.org/10.3390/sym16080963