Convolution Theorem for (p,q)-Gamma Integral Transforms and Their Application to Some Special Functions
Abstract
:1. Introduction
2. Preliminaries, Definitions, and Auxiliary Results
3. The Analog of Differential Operators and Some Convolution Theorems
4. -Gamma Integral of Elementary Functions
- (i)
- (ii)
- (iii)
- (iv)
- (i)
- (ii)
- (iii)
- (iv)
- (i)
- (ii)
- (iii)
- (iv)
- (i)
- (ii)
- (iii)
- (iv)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jackson, F.H. q-difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K. A study of second-order q-difference equations with boundary conditions. Adv. Differ. Equ. 2012, 2012, 35. [Google Scholar] [CrossRef]
- Al-Omari, S. On q-analogues of Mangontarum transform of some polynomials and certain class of H-functions. Nonlinear Stud. 2016, 23, 51–61. [Google Scholar]
- Albayrak, D.; Purohit, S.D.; Ucar, F. On q-analogues of Sumudu transform. Analele ştiinţifice ale Universităţii” Ovidius” Constanţa. Seria Matematică 2013, 21, 239–260. [Google Scholar] [CrossRef]
- Al-Khairy, R. q-Laplace type transforms of q-analogues of Bessel functions. J. King Saud Univ. Sci. 2020, 32, 563–566. [Google Scholar] [CrossRef]
- Fardi, M.; Amini, E.; Al-Omari, S. On certain analogues of Noor integral operators associated with fractional Integrals. J. Funct. Spaces 2024, 2024, 4565581. [Google Scholar] [CrossRef]
- Amini, E.; Fardi, M.; Al-Omari, S.; Nonlaopon, K. Duality for convolution on subclasses of analytic functions and weighted integral operators. Demonstr. Math. 2023, 56, 20220168. [Google Scholar] [CrossRef]
- Al-Omari, S. q-Analogues and properties of the Laplace-type integral operator in the quantum calculus theory. J. Inequal. Appl. 2020, 2020, 14. [Google Scholar] [CrossRef]
- Jirakulchaiwong, S.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K.; Al-Omari, S. On a system of (p,q)-analogues of the natural transform for solving (p,q)-differential equations. J. Math. Comput. Sci. 2023, 29, 369–386. [Google Scholar] [CrossRef]
- Al-Omari, S. Estimates and properties of certain q-Mellin transform on generalized q-calculus theory. Adv. Differ. Equ. 2021, 2021, 233. [Google Scholar] [CrossRef]
- Al-Omari, S.; Araci, S. Certain fundamental properties of generalized natural transform in generalized spaces. Adv. Differ. Equ. 2021, 2021, 163. [Google Scholar] [CrossRef]
- Alp, N.; Sarikaya, M.Z. q-Laplace transform on quantum integral. Kragujev. J. Math. 2023, 47, 153–164. [Google Scholar] [CrossRef]
- Aral, A.; Gupta, V.; Agarwal, R.P. Applications of q-Calculus in Operator Theory; Springer: New York, NY, USA, 2013. [Google Scholar]
- Prabseang, J.; Kamsing, N.; Jessada, T. Quantum Hermite-Hadamard inequalities for double integral and q-differentiableconvex functions. J. Math. Inequal. 2019, 13, 675–686. [Google Scholar] [CrossRef]
- Chung, W.S.; Kim, T.; Kwon, H.I. On the q-analog of the Laplace transform. Russ. J. Math. Phys. 2014, 21, 156–168. [Google Scholar] [CrossRef]
- Araci, S.; Erdal, D.; Seo, J. A study on the fermionic p-adic q-integral representation on Zp associated with weighted q-Bernstein and q-Genocchi polynomials. In Abstract and Applied Analysis; Hindawi Publishing Corporation: New York, NY, USA, 2011; p. 649248. [Google Scholar]
- Mahmudov, N.; Momenzadeh, M. On a class of q-Bernoulli, q-Euler, and q-Genocchi polynomials. Abs. Appl. Anal. 2014, 2014, 108. [Google Scholar]
- Duman, E.; Choi, J. Gottlieb polynomials and their q-Extensions. Mathematics 2021, 9, 1499. [Google Scholar] [CrossRef]
- Burban, I.M.; Klimyk, A.U. (p,q)-differentiation, (p,q)-integration and (p,q)-hypergeometric functions related to quantum groups. Integral Transform. Spec. Funct. 1994, 2, 15–36. [Google Scholar] [CrossRef]
- Milovanovi, G.V.; Gupta, V.; Malik, N. (p,q)-beta functions and applications in approximation. arXiv 2018, arXiv:1602.06307. [Google Scholar] [CrossRef]
- Mahmudov, N.; Keleshteri, M. q-extensions for the Apostol type polynomials. J. Appl. Math. 2014, 2014, 868167. [Google Scholar] [CrossRef]
- Yasmin, G.; Islahi, H.; Choi, J. q-generalized tangent based hybrid polynomials. Symmetry 2021, 13, 791. [Google Scholar] [CrossRef]
- Sadjang, P.N. On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor formulas. Results Math. 2018, 73, 39. [Google Scholar] [CrossRef]
- Amini, E.; Salameh, W.; Al-Omari, S.; Zureigat, H. Results for Analytic Function Associated with Briot–Bouquet Differential Subordinations and Linear Fractional Integral Operators. Symmetry 2024, 16, 711. [Google Scholar] [CrossRef]
- Acar, T. (p,q)-generalization of Szasz-Mirakyan operators. Math. Methods Appl. Sci. 2016, 39, 2685–2695. [Google Scholar] [CrossRef]
- Acar, T.; Aral, A.; Mohiuddine, S.A. On Kantorovich modification of (p,q)-Baskakov operators. J. Inequal. Appl. 2016, 2016, 98. [Google Scholar] [CrossRef]
- Acar, T.; Aral, A.; Mohiuddine, S.A. Approximation by bivariate (p,q)-Bernstein–Kantorovich operators. Iran. J. Sci. Technol. Trans. A Sci. 2018, 42, 655–662. [Google Scholar] [CrossRef]
- Aral, A.; Gupta, V. Applications of (p,q)-gamma function to Szasz durrmeyer operators. Publ. Inst. Math. 2017, 102, 211–220. [Google Scholar] [CrossRef]
- Duran, U.; Acikgoz, M.; Araci, S. A study on some new results arising from (p,q)-calculus. TWMS J. Pure Appl. Math. 2020, 11, 57–71. [Google Scholar]
- Ernst, T. A Comprehensive Treatment of q-Calculus; Springer Science & Business Media: Basel, Switzerland, 2012. [Google Scholar]
- Cheng, W.T.; Gui, C.Y.; Hu, Y.M. Some approximation properties of a kind of (p,q)-Phillips operators. Math. Slovaca 2019, 69, 1381–1394. [Google Scholar] [CrossRef]
- Prabseang, J.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K. Refinements of Hermite-Hadamard inequalities for continuousconvex functions via (p,q)-calculus. Mathematics 2021, 9, 446. [Google Scholar] [CrossRef]
- Chakrabarti, R.; Jagannathan, R. A (p,q)-oscillator realization of two-parameter quantum algebras. J. Phys. A 1991, 24, 711–718. [Google Scholar] [CrossRef]
- Jhanthanam, S.; Tariboon, J.; Ntouyas, S.K.; Nonlaopon, K. On q-Hermite-Hadamard equalities for differentiable convex function. Mathematics 2019, 7, 632. [Google Scholar] [CrossRef]
- Hounkonnou, M.N.; Kyemba, J.D.B. (p,q)-calculus: Differentiation and integration. SUT J. Math. 2013, 49, 145–167. [Google Scholar] [CrossRef]
- Suthar, D.L.; Purohit, S.D.; Araci, S. Solution of fractional Kinetic equations associated with the (p,q)-Mathieu-type series. Discret. Dyn. Nat. Soc. 2020, 2020, 8645161. [Google Scholar] [CrossRef]
- Araci, S.; Duran, U.; Acikgoz, M. (p,q)-Volkenborn integration. J. Number Theory 2017, 171, 18–30. [Google Scholar] [CrossRef]
- Nisara, K.; Rahmanb, G.; Choic, J.; Mubeend, S.; Arshad, M. Generalized hypergeometric k-functions via (k,s)-fractional calculus. J. Nonlinear Sci. Appl. 2017, 10, 1791–1800. [Google Scholar] [CrossRef]
- De Sole, A.; Kac, V.G. On integral representation of q-gamma and q-beta functions. arXiv 2005, arXiv:math/0302032. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2001. [Google Scholar]
- Kalsoom, H.; Amer, M.; Junjua, M.; Hussain, S. Some (p,q)-Estimates of Hermite-Hadamard-type inequalities for coordinated convex and quasi convex function. Mathematics 2019, 7, 683. [Google Scholar] [CrossRef]
- Sadjang, P.N. On two (p,q)-analogues of the Laplace transform. J. Differ. Equ. Appl. 2017, 23, 1562–1583. [Google Scholar]
- Sadjang, P.N. On the (p,q)-gamma and the (p,q)-beta functions. arXiv 2015, arXiv:1506.07394. [Google Scholar]
- Jirakulchaiwong, S.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K.; Kim, H. On (p,q)-analogues of Laplace-typed integraltransforms and applications. Symmetry 2021, 13, 631. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Omari, S.; Salameh, W.; Zureigat, H. Convolution Theorem for (p,q)-Gamma Integral Transforms and Their Application to Some Special Functions. Symmetry 2024, 16, 882. https://doi.org/10.3390/sym16070882
Al-Omari S, Salameh W, Zureigat H. Convolution Theorem for (p,q)-Gamma Integral Transforms and Their Application to Some Special Functions. Symmetry. 2024; 16(7):882. https://doi.org/10.3390/sym16070882
Chicago/Turabian StyleAl-Omari, Shrideh, Wael Salameh, and Hamzeh Zureigat. 2024. "Convolution Theorem for (p,q)-Gamma Integral Transforms and Their Application to Some Special Functions" Symmetry 16, no. 7: 882. https://doi.org/10.3390/sym16070882
APA StyleAl-Omari, S., Salameh, W., & Zureigat, H. (2024). Convolution Theorem for (p,q)-Gamma Integral Transforms and Their Application to Some Special Functions. Symmetry, 16(7), 882. https://doi.org/10.3390/sym16070882