Extended Exton’s Triple and Horn’s Double Hypergeometric Functions and Associated Bounding Inequalities
Abstract
:1. Introduction and Preliminaries
2. Extended Horn’s Double Hypergeometric Function
2.1. Integral Representations
2.2. Transformation Formula
2.3. Recurrence Relation
2.4. Mellin Transform and Inverse Mellin Transform
2.5. Laguerre Polynomial Representation
3. Extended Exton’s Triple Hypergeometric Function
3.1. Integral Representations
3.2. Transformation Formulae
3.3. Recurrence Relation and Generating Function
4. Bounding Inequalities for and
4.1. Bounds for the Extended Functions
4.2. Bounds Obtained via Integral Representations
- For and , the following two-sided inequalities for hold true according to Luke’s theorem (see ([28], Theorem 16, Equation (5.6)):For , the two-sided inequalities for Kummer’s confluent hypergeometric function easily follow:
- Bounding inequalities for and :
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- Luke ([28], Equation (6.25)) gave the following inequality for the modified Bessel function :
5. An Application
Raw Moments
Characteristic Function
6. Concluding Remarks
- The following differential equation is derivable from (3):
- Can other bounding inequalities for and be given?
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chaudhry, M.A.; Qadir, A.; Rafique, M.; Zubair, S.M. Extension of Euler’s Beta function. J. Comput. Appl. Math. 1997, 78, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Chaudhry, M.A.; Temme, N.M.; Veling, E.J.M. Asymptotic and closed form of a generalized incomplete gamma function. J. Comput. Appl. Math. 1996, 67, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Chaudhry, M.A.; Zubair, S.M. Generalized incomplete gamma functions with applications. J. Comput. Appl. Math. 1994, 55, 99–124. [Google Scholar] [CrossRef] [Green Version]
- Chaudhry, M.A.; Zubair, S.M. On the decomposition of generalized incomplete gamma functions with applications to Fourier transforms. J. Comput. Appl. Math. 1995, 59, 253–284. [Google Scholar] [CrossRef] [Green Version]
- Chaudhry, M.A.; Zubair, S.M. Extended incomplete gamma functions with applications. J. Math. Anal. Appl. 2002, 274, 725–745. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherland; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Chaudhry, M.A.; Qadir, A.; Srivastava, H.M.; Paris, R.B. Extended hypergeometric and confluent hypergeometric functions. Appl. Math. Comput. 2004, 159, 589–602. [Google Scholar] [CrossRef]
- Parmar, R.K. A new generalization of Gamma, Beta, hypergeometric and confluent hypergeometric functions. Matematiche 2013, 69, 33–52. [Google Scholar]
- Srivastava, H.M.; Agarwal, P.; Jain, S. Generating functions for the generalized Gauss hypergeometric functions. Appl. Math. Comput. 2014, 247, 348–352. [Google Scholar] [CrossRef]
- Luo, M.J.; Parmar, R.K.; Raina, R.K. On extended Hurwitz–Lerch zeta function. J. Math. Anal. Appl. 2017, 448, 1281–1304. [Google Scholar] [CrossRef]
- Parmar, R.K.; Pogány, T.K. On (p,q)–extension of further members of Bessel-Struve functions class. Miskolc Math. Notes 2019, 20, 451–463. [Google Scholar] [CrossRef] [Green Version]
- Özarslan, M.A.; Özergin, E. Some generating relations for extended hypergeometric function via generalized fractional derivative operator. Math. Comput. Model. 2010, 52, 1825–1833. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press (Ellis Horwood Limited, Chichester): New York, NY, USA; Chichester, UK; Brisbane, Australian; Toronto, QN, Canada, 1985. [Google Scholar]
- Horn, J. Hypergeometrische Funktionen zweier Verändlichen. Math. Ann. 1931, 105, 381–407. [Google Scholar] [CrossRef]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Rainville, E.D. Special Functions; Macmillan Company: New York, NY, USA, 1960; Reprinted by Chelsea Publishing Company: Bronx, NY, USA, 1971. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Tables of Integral Transforms; McGraw-Hill Book Company: New York, NY, USA; Toronto, QN, Canada; London, UK, 1954; Volume I. [Google Scholar]
- Watson, G.N. A Treatise on the Theory of Bessel Functions, 2nd ed.; Cambridge University Press: Cambridge, UK; London, UK; New York, NY, USA, 1944. [Google Scholar]
- Whittaker, E.T.; Watson, G.N. A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions, 4th ed.; Cambridge University Press: Cambridge, UK; London, UK; New York, NY, USA, 1963. [Google Scholar]
- Krasikov, I. Uniform bounds for Bessel functions. J. Appl. Anal. 2006, 12, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Slater, L.J. Confluent Hypergeometric Functions; Cambridge University Press: Cambridge, UK; London, UK; New York, NY, USA, 1960. [Google Scholar]
- Brychkov, Y.A.; Marichev, O.I.; Savischenko, N.V. Handbook of Mellin Transforms; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2019. [Google Scholar]
- Mathai, A.M.; Saxena, R.K.; Haubold, H.J. The H-Function: Theory and Applications; Springer: Dordrecht, The Netherlands; New York, NY, USA, 2010. [Google Scholar]
- Miller, A.R. Remarks on a generalized beta function. J. Comput. Appl. Math. 1998, 100, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M. On transformations of certain hypergeometric functions of three variables. Publ. Math. Debrecen 1965, 12, 65–74. [Google Scholar] [CrossRef]
- Srivastava, H.M. Relations between functions contiguous to certain hypergeometric functions of three variables. Proc. Nat. Acad. Sci. India Sec. A 1966, 36, 377–385. [Google Scholar]
- Chaudhry, M.A.; Zubair, S.M. On a Class of Incomplete Gamma Functions with Applications; CRC Press (Chapman and Hall): Boca Raton, FL, USA, 2002. [Google Scholar]
- Luke, Y.L. Inequalities for generalized hypergeometric functions. J. Approx. Theory 1974, 5, 41–65. [Google Scholar] [CrossRef] [Green Version]
- von Lommel, E.C.J. Die Beugungserscheinungen einer kreisrunden Öffnung und eines kreisrunden Schirmchens theoretisch und experimentell bearbeitet. Abh. Math. Phys. Classe k. b. Akad. Wiss. (München) 1885, 15, 229–328. [Google Scholar]
- von Lommel, E.C.J. Die Beugungserscheinungen geradlinig begrenzter Schirme. Abh. Math. Phys. Classe k. b. Akad. Wiss. (München) 1886, 15, 529–664. [Google Scholar]
- Ifantis, E.K.; Siafarikas, P.D. Inequalities involving Bessel and modified Bessel functions. J. Math. Anal. Appl. 1990, 147, 214–227. [Google Scholar] [CrossRef] [Green Version]
- Minakshisundaram, S.; Szász, O. On absolute convergence of multiple Fourier series. Trans. Amer. Math. Soc. 1947, 61, 36–53. [Google Scholar] [CrossRef]
- Landau, L. Monotonicity and bounds on Bessel functions. In Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory; Southwest Texas State University: San Marcos, TX, USA, 2000. [Google Scholar]
- Olenko, A.Y. Upper bound on xJν(x) and its applications. Integral Transforms Spec. Funct. 2006, 17, 455–467. [Google Scholar] [CrossRef]
- Exton, H. Multiple Hypergeometric Functions and Applications; Halsted Press (Ellis Horwood, Chichester): New York, NY, USA; London, UK; Sydney, Australia; Toronto, QN, Canada, 1976. [Google Scholar]
- Agarwal, R.; Kumar, N.; Parmar, R.K.; Purohit, S.D. Some families of the general Mathieu-type series with associated properties and functional inequalities. Math. Methods Appl. Sci. 2022, 45, 2132–2150. [Google Scholar] [CrossRef]
- Parmar, R.K.; Choi, J.; Purohit, S.D. Further generalization of the extended Hurwitz-Lerch Zeta functions. Bol. Soc. Paran. Mat. 2019, 37, 177–190. [Google Scholar] [CrossRef] [Green Version]
- Parmar, R.K.; Raina, R.K. On a certain extension of the Hurwitz-Lerch Zeta function. Ann. West Univ. Timisoara-Math. Computer Sci. 2014, 52, 157–170. [Google Scholar] [CrossRef] [Green Version]
- Górska, K.; Horzela, A.; Maširević, D.J.; Pogány, T.K. Observations on the McKay Iν Bessel distribution. J. Math. Anal. Appl. 2022, 516, 126481. [Google Scholar] [CrossRef]
- Maširević, D.J. On new formulae for the cumulative distribution function of the noncentral Chi-square distribution. Mediterr. J. Math. 2017, 14, 66. [Google Scholar] [CrossRef]
- Maširević, D.J.; Pogány, T.K. On new formulae for cumulative distribution function for McKay Bessel distribution. Comm. Statist. Theory Methods 2021, 50, 143–160. [Google Scholar] [CrossRef]
- Lukacs, E. Characteristic Functions; Translated from the English and with a preface by V.M. Zolotarev; Nauka: Moscow, Russia, 1979. (In Russian) [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parmar, R.K.; Choi, J.; S., S. Extended Exton’s Triple and Horn’s Double Hypergeometric Functions and Associated Bounding Inequalities. Symmetry 2023, 15, 1132. https://doi.org/10.3390/sym15061132
Parmar RK, Choi J, S. S. Extended Exton’s Triple and Horn’s Double Hypergeometric Functions and Associated Bounding Inequalities. Symmetry. 2023; 15(6):1132. https://doi.org/10.3390/sym15061132
Chicago/Turabian StyleParmar, Rakesh Kumar, Junesang Choi, and Saravanan S. 2023. "Extended Exton’s Triple and Horn’s Double Hypergeometric Functions and Associated Bounding Inequalities" Symmetry 15, no. 6: 1132. https://doi.org/10.3390/sym15061132
APA StyleParmar, R. K., Choi, J., & S., S. (2023). Extended Exton’s Triple and Horn’s Double Hypergeometric Functions and Associated Bounding Inequalities. Symmetry, 15(6), 1132. https://doi.org/10.3390/sym15061132