Results on Third-Order Differential Subordination for Analytic Functions Related to a New Integral Operator
Abstract
:1. Introduction
2. Preliminary Results
Novelty of the Study for Third-Order Differential Subordination and Superordination
3. Results Related to the Third-Order Differential Subordination
4. Conclusions
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Antonion, J.A.; Miller, S.S. Third-order differential inequalities and subordination in complex plane. Complex Var. Elliptic Equ. 2011, 56, 439–454. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; Series on Monographs and Textbooks in Pure and Applied Mathematics, No. 225; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 2000. [Google Scholar]
- Jeyaraman, M.P.; Suresh, T.K. Third-order differential subordination of analytic functions. Acta Univ. Apulensis Math. Inform. 2013, 35, 187–202. [Google Scholar]
- Tang, H.; Deniz, E. Third-order differential subordination results for analytic functions involving the generalized Bessel functions. Acta Math. Sci. Ser. B Engl. Ed. 2014, 34, 1707–1719. [Google Scholar] [CrossRef]
- Miller, S.S.; Macanu, P.T. Subordinates of differential superordinations. Complex Var. Theory Appl. 2003, 48, 815–826. [Google Scholar]
- Tang, H.; Srivastava, H.M.; Li, S.; Ma, L. Third-order differential subordination and superordination results for meromorphically multivalent functions associated with the Liu-Srivastava operator. Abstr. Appl. Anal. 2014, 2014, 792175. [Google Scholar] [CrossRef]
- Ibrahim, R.W.; Ahmad, M.Z.; Al-Janaby, H.F. Third-order differential subordination and superordination involving a fractional operator. Open Math. 2015, 13, 706–728. [Google Scholar] [CrossRef]
- Tang, H.; Srivastava, H.M.; Deniz, E.; Li, S. Third-order differential superordination involving the generalized Bessel functions. Bull. Malays. Math. Sci. Soc. 2015, 38, 1669–1688. [Google Scholar] [CrossRef]
- Al-Ameedee, S.A.; Atshan, W.G.; Al-Maamori, F.A. Some new results of differential subordinations for Higher-order derivatives of multivalent functions. J. Phys. Conf. Ser. 2021, 1804, 012111. [Google Scholar] [CrossRef]
- Atshan, W.G.; Ali, A.A.R. On Sandwich theorems results for certain univalent functions defined by generalized operators. Iraqi J. Sci. 2021, 62, 2376–2383. [Google Scholar] [CrossRef]
- Ali, E.E.; Srivastava, H.M.; El-Ashwah, R.M.; Albalahi, A.M. Differential subordination and differential superordination for classes of admissible multivalent functions associated with a linear operator. Mathematics 2022, 10, 4690. [Google Scholar] [CrossRef]
- Aouf, M.K.; Mostafa, A.O. Subordination results for analytic functions associated with fractional q-calculus operators with complex order. Afr. Mat. 2020, 31, 1387–1396. [Google Scholar] [CrossRef]
- Aouf, M.K.; Madian, S.M. Subordination factor sequence results for starlike and convex classes defined by q-Cătaş operator. Afr. Mat. 2021, 32, 1239–1251. [Google Scholar] [CrossRef]
- Hadi, S.H.; Darus, M.; Ghanim, F.; Alb Lupaş, A. Sandwich-Type Theorems for a Family of Non-Bazilevič Functions Involving a q-Analog Integral Operator. Mathematics 2023, 11, 2479. [Google Scholar] [CrossRef]
- Bulboaca, T. Differential Subordinations and Superordinations: Recent Results; House of Scientific Book Publishing: Cluj-Napoca, Romania, 2005. [Google Scholar]
- Cho, N.E.; Bulboacă, T.; Srivastava, H.M. A general family of integral and associated subordination and superordination properties of some special analytic function classes. Appl. Math. Comput. 2012, 219, 2278–2288. [Google Scholar] [CrossRef]
- Darweesh, A.M.; Atshan, W.G.; Battor, A.H. On sandwich results of meromorphic univalent functions defined by new operator. AIP Conf. Proc. 2023, 2845, 050035. [Google Scholar]
- Aouf, M.K.; Mostafa, A.O.; Zayed, H.M. Subordination and superordination properties of p-valent functions defined by a generalized fractional differintegral operator. Quaest. Math. 2016, 39, 545–560. [Google Scholar] [CrossRef]
- Swamy, S.R. Sandwich theorems for p-valent functions defined by certain integral operator. Int. J. Math. Arch. 2013, 4, 101–107. [Google Scholar]
- El-Deeb, S.M.; Bulboacă, T. Differential Sandwich-Type Results for Symmetric Functions Associated with Pascal Distribution Series. J. Contemp. Math. Anal. (Armen. Acad. Sci.) 2021, 56, 214–224. [Google Scholar] [CrossRef]
- Zayed, H.M.; Mohammadein, S.A.; Aouf, M.K. Sandwich results of p-valent functions defined by a generalized fractional derivative operator with application to vortex motion. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Matemáticas 2019, 113, 1499–1514. [Google Scholar] [CrossRef]
- Seoudy, T.M. Some applications of third-order differential subordination for analytic functions involving k-Ruscheweyh derivative operator. Afr. Mat. 2023, 34, 29. [Google Scholar] [CrossRef]
- Atshan, W.G.; Hiress, R.A.; Altinkaya, S. On third-order differential subordination and superordination properties of analytic functions defined by a generalized operator. Symmetry 2022, 14, 418. [Google Scholar] [CrossRef]
- Darweesh, A.M.; Atshan, W.G.; Battor, A.H.; Lupas, A.A. Third-order differential subordination results for analytic functions associated with a certain differential operator. Symmetry 2022, 14, 99. [Google Scholar] [CrossRef]
- Farzana, H.A.; Stephen, B.A.; Jeyaramam, M.P. Third-order differential subordination of analytic function defined by functional derivative operator. Analele Stiintifice Univ. Al I Cuza Iasi Mat. (New Ser.) 2016, 62, 105–120. [Google Scholar]
- Răducanu, D. Third-order differential subordinations for analytic functions associated with generalized Mittag-Leffler functions. Mediterr. J. Math. 2017, 14, 167. [Google Scholar] [CrossRef]
- Oros, G.I.; Oros, G.; Preluca, L.F. New applications of Gaussian Hypergeometric function for developments on third-order differential subordinations. Symmetry 2023, 15, 1306. [Google Scholar] [CrossRef]
- Oros, G.I.; Oros, G.; Preluca, L.F. Third-order differential subordinations using fractional integral of Gaussian Hypergeometric function. Axioms 2023, 12, 133. [Google Scholar] [CrossRef]
- Ponnusamy, S.; Juneja, O.P. Third-order differential inequalities in the complex plane. In Current Topics in Analytic Function Theory; World Scientific Publishing Company: Singapore; London, UK, 1992. [Google Scholar]
- Miller, S.S.; Macanu, P.T. Differential subordinations and univalent functions. Mich. Math. J. 1981, 28, 157–171. [Google Scholar] [CrossRef]
- Zayed, H.M.; Bulboaca, T. Applications of differential subordinations involving a generalized fractional differintegral operator. J. Inequal. Appl. 2019, 2019, 242. [Google Scholar] [CrossRef]
- Rao, N.; Ayman-Mursaleen, M.; Aslan, R. A note on a general sequence of λ-Szász Kantorovich type operators. Comput. Appl. Math. 2024, 43, 428. [Google Scholar] [CrossRef]
- Ayman-Mursaleen, M.; Heshamuddin, M.; Rao, N.; Sinha, B.K.; Yadav, A.K. Hermite polynomials linking Szász–Durrmeyer operators. Comput. Appl. Math. 2024, 43, 223. [Google Scholar] [CrossRef]
- Theyab, S.D.; Atshan, W.G.; Lupas, A.A.; Abdullah, H.K. New results on higher-order differential Subordination and superordination for univalent analytic functions using a new operator. Symmetry 2022, 14, 1576. [Google Scholar] [CrossRef]
- Tayyah, A.S.; Atshan, W.G. New Results on (r, k, μ)-Riemann–Liouville Fractional Operators in Complex Domain with Applications. Fractal Fract. 2024, 8, 165. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maktoof, S.F.; Atshan, W.G.; Alkiffai, A.N. Results on Third-Order Differential Subordination for Analytic Functions Related to a New Integral Operator. Symmetry 2024, 16, 1453. https://doi.org/10.3390/sym16111453
Maktoof SF, Atshan WG, Alkiffai AN. Results on Third-Order Differential Subordination for Analytic Functions Related to a New Integral Operator. Symmetry. 2024; 16(11):1453. https://doi.org/10.3390/sym16111453
Chicago/Turabian StyleMaktoof, Sara Falih, Waggas Galib Atshan, and Ameera N. Alkiffai. 2024. "Results on Third-Order Differential Subordination for Analytic Functions Related to a New Integral Operator" Symmetry 16, no. 11: 1453. https://doi.org/10.3390/sym16111453
APA StyleMaktoof, S. F., Atshan, W. G., & Alkiffai, A. N. (2024). Results on Third-Order Differential Subordination for Analytic Functions Related to a New Integral Operator. Symmetry, 16(11), 1453. https://doi.org/10.3390/sym16111453