Similar Classes of Convex and Close-to-Convex Meromorphic Functions Obtained Through Integral Operators
Abstract
:1. Introduction and Preliminaries
- ,
- for ,
- , where ,
- , where
- , where , and the function belongs to the class
- .
- (1)
- ;
- (2)
- ;
- (3)
- ;
- (4)
- ;
- (5)
- ;
- (6)
- , where
2. Main Results
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, S.S.; Mocanu, P.T. Differential Subordinations. Theory and Applications; Marcel Dekker Inc.: New York, NY, USA; Basel, Switzerland, 2000. [Google Scholar]
- Totoi, A. On integral operators for meromorphic functions. Gen. Math. Sibiu 2010, 18, 91–108. [Google Scholar]
- Al-shbeil, I.; Khan, S.; AlAqad, H.; Alnabulsi, S.; Khan, M.F. Applications of the Symmetric Quantum-Difference Operator for New Subclasses of Meromorphic Functions. Symmetry 2023, 15, 1439. [Google Scholar] [CrossRef]
- Aldawish, I. Formula for meromorphic symmetric differences operator with application in the theory of subordination inequality. Heliyon 2023, 9, e13177. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wanas, A.K.; Cotîrlǎ, L.I. Initial coefficient estimates and Fekete–Szegö inequalities for new families of bi-univalent functions governed by (p − q)-Wanas operator. Symmetry 2021, 13, 2118. [Google Scholar] [CrossRef]
- Wanas, A.K.; Hammadi, N.J. Applications of Fractional Calculus on a Certain Class of Univalent Functions Associated with Wanas Operator. Earthline J. Math. Sci. 2022, 9, 117–129. [Google Scholar] [CrossRef]
- Shaba, T.G.; Wanas, A.K. Coefficient bounds for a certain families of m-fold symmetric bi-univalent functions associated with q-analogue of Wanas operator. Acta Univ. Apulensis 2021, 68, 25–37. [Google Scholar]
- Wanas, A.K.; Murugusundaramoorthy, G. Differential sandwich results for Wanas operator of analytic functions. Math. Moravica 2020, 24, 17–28. [Google Scholar] [CrossRef]
- Altınkaya, Ş.; Wanas, A.K. Some Properties for Fuzzy Differential Subordination Defined by Wanas Operator. Earthline J. Math. Sci. 2020, 4, 51–62. [Google Scholar] [CrossRef]
- Wanas, A.K.; Altınkaya, Ş. Differential Subordination Results for Holomorphic Functions Associated with Wanas Operator. Earthline J. Math. Sci. 2020, 3, 249–261. [Google Scholar] [CrossRef]
- El-Ashwah, R.M.; El-Qadeem, A.H.; Murugusundaramoorthy, G.; Elshazly, I.S.; Halouani, B. Attributes of Subordination of a Specific Subclass of p-Valent Meromorphic Functions Connected to a Linear Operator. Symmetry 2024, 16, 1338. [Google Scholar] [CrossRef]
- Güney, H.Ö.; Breaz, D.; Owa, S. A New Operator for Meromorphic Functions. Mathematics 2022, 10, 1985. [Google Scholar] [CrossRef]
- Dziok, J. Starlike Functions in the Space of Meromorphic Harmonic Functions. Symmetry 2024, 16, 1112. [Google Scholar] [CrossRef]
- Seoudy, T.M.; Shammaky, A.E. Some Properties of Certain Classes of Meromorphic Multivalent Functions Defined by Subordination. Symmetry 2023, 15, 347. [Google Scholar] [CrossRef]
- Almutairi, N.S.; Shahen, A.; Darwish, H. On Meromorphic Parabolic Starlike Functions with Fixed Point Involving the q-Hypergeometric Function and Fixed Second Coefficients. Mathematics 2023, 11, 2991. [Google Scholar] [CrossRef]
- Ali, E.E.; Srivastava, H.M.; Lashin, A.M.Y.; Albalahi, A.M. Applications of Some Subclasses of Meromorphic Functions Associated with the q-Derivatives of the q-Binomials. Mathematics 2023, 11, 2496. [Google Scholar] [CrossRef]
- Ghanim, F.; Al-Janaby, H.F.; Bazighifan, O. Geometric properties of the meromorphic functions class through special functions associated with a linear operator. Adv. Contin. Discret. Model. 2022, 2022, 17. [Google Scholar] [CrossRef]
- Ahmed, S.; Darus, M.; Oros, G.I. Subordination Results for the Second-Order Differential Polynomials of Meromorphic Functions. Symmetry 2022, 14, 2587. [Google Scholar] [CrossRef]
- Almutairi, N.S.; Shahen, A.; Cătaş, A.; Darwish, H. Convolution Properties of Meromorphic p -Valent Functions with Coefficients of Alternating Type Defined Using q -Difference Operator. Mathematics 2024, 12, 2104. [Google Scholar] [CrossRef]
- Alb Lupaş, A. New Applications of Fuzzy Set Concept in the Geometric Theory of Analytic Functions. Axioms 2023, 12, 494. [Google Scholar] [CrossRef]
- Acu, M. Some subclasses of meromorphic functions. Filomat 2007, 21, 1–9. [Google Scholar] [CrossRef]
- Oros, G.I.; Oros, G.; Preluca, L.F. Third-Order Differential Subordinations Using Fractional Integral of Gaussian Hypergeometric Function. Axioms 2023, 12, 133. [Google Scholar] [CrossRef]
- Kassar, O.N.; Juma, A.R. Certain subclasses of meromorphic functions with positive coefficients associated with linear operator. Kragujev. J. Math. 2023, 47, 143–151. [Google Scholar] [CrossRef]
- Sakar, F.; Guney, H. A Study on Meromorphic Harmonic Starlike Functions by Using a New Generalized Differential Operator. Adv. Res. 2016, 6, 1–8, ISSN 23480394. [Google Scholar] [CrossRef]
- Wanas, A.K.; Sakar, F.M.; Alb Lupaş, A. Applications Laguerre Polynomials for Families of Bi-Univalent Functions Defined with (p,q)-Wanas Operator. Axioms 2023, 12, 430. [Google Scholar] [CrossRef]
- Shi, L.; Ahmad, B.; Khan, N.; Khan, M.G.; Araci, S.; Mashwani, W.K.; Khan, B. Coefficient Estimates for a Subclass of Meromorphic Multivalent q-Close-to-Convex Functions. Symmetry 2021, 13, 1840. [Google Scholar] [CrossRef]
- Totoi, E.A.; Cotîrlă, L.I. Preserving Classes of Meromorphic Functions through Integral Operators. Symmetry 2022, 14, 1545. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cotîrlă, L.-I.; Totoi, E.-A. Similar Classes of Convex and Close-to-Convex Meromorphic Functions Obtained Through Integral Operators. Symmetry 2024, 16, 1604. https://doi.org/10.3390/sym16121604
Cotîrlă L-I, Totoi E-A. Similar Classes of Convex and Close-to-Convex Meromorphic Functions Obtained Through Integral Operators. Symmetry. 2024; 16(12):1604. https://doi.org/10.3390/sym16121604
Chicago/Turabian StyleCotîrlă, Luminiţa-Ioana, and Elisabeta-Alina Totoi. 2024. "Similar Classes of Convex and Close-to-Convex Meromorphic Functions Obtained Through Integral Operators" Symmetry 16, no. 12: 1604. https://doi.org/10.3390/sym16121604
APA StyleCotîrlă, L.-I., & Totoi, E.-A. (2024). Similar Classes of Convex and Close-to-Convex Meromorphic Functions Obtained Through Integral Operators. Symmetry, 16(12), 1604. https://doi.org/10.3390/sym16121604