Explicit Runge–Kutta Numerical Manifold Method for Solving the Burgers’ Equation via the Hopf–Cole Transformation
Abstract
:1. Introduction
2. H-C Transformation
- Governing Equation:
- Initial Condition (IC):
- Boundary Condition (BC):
- applying the transformation upon Equation (2) results in
3. The RKNMGM Scheme
3.1. Spatial Discretization
- Step 1
- Adopt the uniform mesh with nodes with and , and the MCs are , , which are shown as the bases of the overlapping triangles at the lowest row in Figure 1;
- Step 2
- Computing the intersection of each MC and the problem domain leads to the boundary PCs and , and the interior PCs , , which are illustrated as the bases of the overlapping triangles in the middle row in Figure 1;
- Step 3
- Computing the intersections of every adjacent pair of PCs gives the MEs: , , which are rendered as the triangle bases in the uppermost row in Figure 1.
3.2. Approximation
3.3. Weak Formulation
3.4. Semi-Discretization Scheme
3.5. Time Integration Scheme
3.6. Solution Restoration
4. Implementation Aspects
Algorithm 1: The RKNMGM scheme for solving Equations (1)–(3) |
input: , , T, , , N output: |
Algorithm 2: Crout’s Method to Solve |
Input: , N Output: |
5. Validation Problems
6. Conclusions
- (1)
- The H-C transform simplifies the Burgers’ equation, significantly reducing the complexity of solving the original equation while preserving essential physical characteristics. The solution to the original problem can be conveniently recovered from that of the transformed problem using the H-C transform once again.
- (2)
- By adopting the dual cover approximation with constant cover functions and linear weight functions, computational costs are reduced while Dirichlet boundary condition can be accurately imposed. Additionally, integrals over manifold elements are computed using simplex integration formulas instead of Gaussian quadrature, further enhancing accuracy and efficiency.
- (3)
- We introduced the fully explicit TVD-RK2 scheme for temporal discretization in the NMM. Although both the TVD-RK2 and the Crank–Nicolson method have second-order accuracy, the TVD property possessed in the former one brings our present method an advantage in suppressing numerical oscillations, as evidenced in the numerical experiments.
- (4)
- The final computational formulation, derived from the Galerkin weak form, results in a symmetric mass matrix, whose inverse can be efficiently obtained using the Crout method. This facilitates implementation and parallelization of the RKNMGM.
- (5)
- Our numerical results for the Burgers’ equation under diversified initial condition values were thoroughly compared with exact solutions and other numerical methods. These comparisons demonstrate that our method effectively captures steep gradients, even for very small viscosity coefficients.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Burgers, J.M. A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1948, 1, 171–199. [Google Scholar]
- Cole, J.D. On a quasi-linear parabolic equation occurring in aerodynamics. Quart. Appl. Math. 1951, 9, 225–236. [Google Scholar] [CrossRef]
- Wood, W. An exact solution for Burger’s equation. Commun. Numer. Meth. Eng. 2006, 22, 797–798. [Google Scholar] [CrossRef]
- Hassanien, I.; Salama, A.; Hosham, H.A. Fourth-order finite difference method for solving Burgers’ equation. Appl. Math. Comput. 2005, 170, 781–800. [Google Scholar] [CrossRef]
- Yağmurlu, M.; Gagir, A. A finite difference approximation for numerical simulation of 2D viscous coupled burgers equations. Math. Sci. Appl. E-Notes 2022, 10, 146–158. [Google Scholar] [CrossRef]
- Kaur, R.; Kukreja, V.; Parumasur, N.; Singh, P. Two different temporal domain integration schemes combined with compact finite difference method to solve modified Burgers’ equation. Ain Shams Eng. J. 2022, 13, 101507. [Google Scholar] [CrossRef]
- Vandandoo, U.; Zhanlav, T.; Chuluunbaatar, O.; Gusev, A.; Vinitsky, S.; Chuluunbaatar, G. Higher-Order Finite-Difference Methods for the Burgers’ Equations. In High-Order Finite Difference and Finite Element Methods for Solving Some Partial Differential Equations; Springer Nature: Cham, Switzerland, 2024; pp. 35–67. [Google Scholar]
- Dogan, A. A Galerkin finite element approach to Burgers’ equation. Appl. Math. Comput. 2004, 157, 331–346. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, Z. A characteristics-mixed finite element method for Burgers’ equation. J. Appl. Math. Comput. 2004, 15, 29–51. [Google Scholar] [CrossRef]
- Saka, B.; Dağ, İ. A numerical study of the Burgers’ equation. J. Franklin Inst. 2008, 345, 328–348. [Google Scholar] [CrossRef]
- Dağ, İ.; Irk, D.; Saka, B. A numerical solution of the Burgers’ equation using cubic B-splines. Appl. Math. Comput. 2005, 163, 199–211. [Google Scholar] [CrossRef]
- Mittal, R.; Jain, R. Numerical solutions of nonlinear Burgers’ equation with modified cubic B-splines collocation method. Appl. Math. Comput. 2012, 218, 7839–7855. [Google Scholar] [CrossRef]
- Ganaie, I.A.; Kukreja, V.K. Numerical solution of Burgers’ equation by cubic Hermite collocation method. Appl. Math. Comput. 2014, 237, 571–581. [Google Scholar] [CrossRef]
- Arar, N.; Deghdough, B.; Dekkiche, S.; Torch, Z.; Nagy, A. Numerical Solution of the Burgers’ Equation Using Chelyshkov Polynomials. Int. J. Appl. Comput. Math. 2024, 10, 33. [Google Scholar] [CrossRef]
- Guo, Y.; Shi, Y.f.; Li, Y.m. A fifth-order finite volume weighted compact scheme for solving one-dimensional Burgers’ equation. Appl. Math. Comput. 2016, 281, 172–185. [Google Scholar] [CrossRef]
- Shahabi, A.; Ghiassi, R. A robust second-order godunov-type method for Burgers’ equation. Int. J. Appl. Comput. Math. 2022, 8, 82. [Google Scholar] [CrossRef]
- Xin, J.; Flaherty, J. Implicit time integration of hyperbolic conservation laws via discontinuous Galerkin methods. Int. J. Numer. Methods Biomed. Eng. 2011, 27, 711–721. [Google Scholar] [CrossRef]
- Zhang, R.P.; Yu, X.J.; Zhao, G.Z. Modified Burgers’ equation by the local discontinuous Galerkin method. Chin. Phys. B 2013, 22, 030210. [Google Scholar]
- Hutridurga, H.; Kumar, K.; Pani, A.K. Discontinuous Galerkin methods with generalized numerical fluxes for the Vlasov-viscous Burgers’ system. J. Sci. Comput. 2023, 96, 7. [Google Scholar]
- Zhang, X.H.; Ouyang, J.; Zhang, L. Element-free characteristic Galerkin method for Burgers’ equation. Eng. Anal. Boundary Elem. 2009, 33, 356–362. [Google Scholar] [CrossRef]
- Zhang, L.; Ouyang, J.; Wang, X.; Zhang, X. Variational multiscale element-free Galerkin method for 2D Burgers’ equation. J. Comput. Phys. 2010, 229, 7147–7161. [Google Scholar] [CrossRef]
- Ma, L.; Zhao, L.; Wang, X. An iteration-free semi-Lagrangian meshless method for Burgers’ equations. Eng. Anal. Boundary Elem. 2023, 150, 482–491. [Google Scholar] [CrossRef]
- Hashemian, A.; Shodja, H.M. A meshless approach for solution of Burgers’ equation. J. Comput. Appl. Math. 2008, 220, 226–239. [Google Scholar] [CrossRef]
- Xie, H.; Li, D. A meshless method for Burgers’ equation using MQ-RBF and high-order temporal approximation. Appl. Math. Modell. 2013, 37, 9215–9222. [Google Scholar] [CrossRef]
- Shyaman, V.; Sreelakshmi, A.; Awasthi, A. A higher order implicit adaptive finite point method for the Burgers’ equation. J. Differ. Equ. Appl. 2021, 29, 235–269. [Google Scholar] [CrossRef]
- Shi, G.H. Manifold method of material analysis. In Proceedings of the Transactions of the 9th Army Conference on Applied Mathematics and Computing, US Army Research Office Minneapolis, Minneapolis, MN, USA, 21–25 October 1991; Volume 92. [Google Scholar]
- Lin, J.S. A mesh-based partition of unity method for discontinuity modeling. Comput. Methods Appl. Mech. Eng. 2003, 192, 1515–1532. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, Z.; Ge, X. Numerical manifold space of Hermitian form and application to Kirchhoff’s thin plate problems. Int. J. Numer. Meth. Eng. 2013, 95, 721–739. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, F. The numerical manifold method for exterior problems. Comput. Methods Appl. Mech. Eng. 2020, 364, 112968. [Google Scholar] [CrossRef]
- Guo, H.; Cao, X.; Liang, Z.; Lin, S.; Zheng, H.; Cui, H. Hermitian numerical manifold method for large deflection of irregular Föppl-von Kármán plates. Eng. Anal. Bound. Elem. 2023, 153, 25–38. [Google Scholar] [CrossRef]
- Tan, F.; Tong, D.; Liang, J.; Yi, X.; Jiao, Y.Y.; Lv, J. Two-dimensional numerical manifold method for heat conduction problems. Eng. Anal. Bound. Elem. 2022, 137, 119–138. [Google Scholar] [CrossRef]
- Ji, X.; Zhang, H.; Han, S. Transient heat conduction modeling in continuous and discontinuous anisotropic materials with the numerical manifold method. Eng. Anal. Bound. Elem. 2023, 155, 518–527. [Google Scholar] [CrossRef]
- Ning, Y.; Lu, Q.; Liu, X. Fracturing failure simulations of rock discs with pre-existing cracks by numerical manifold method. Eng. Anal. Bound. Elem. 2023, 148, 389–400. [Google Scholar] [CrossRef]
- Zhang, N.; Zheng, H.; Li, X.; Wu, W. On hp refinements of independent cover numerical manifold method—some strategies and observations. Sci. China Technol. Sci. 2023, 66, 1335–1351. [Google Scholar] [CrossRef]
- Zhang, L.; Kong, H.; Zheng, H. Numerical manifold method for steady-state nonlinear heat conduction using Kirchhoff transformation. Sci. China Technol. Sci. 2024, 67, 992–1006. [Google Scholar] [CrossRef]
- Tong, D.; Yi, X.; Tan, F.; Jiao, Y.; Liang, J. Three-dimensional numerical manifold method for heat conduction problems with a simplex integral on the boundary. Sci. China Technol. Sci. 2024, 67, 1007–1022. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Yan, J. Manifold method coupled velocity and pressure for Navier–Stokes equations and direct numerical solution of unsteady incompressible viscous flow. Comput. Fluids 2010, 39, 1353–1365. [Google Scholar] [CrossRef]
- Lin, S.; Cao, X.; Zheng, H.; Li, Y.; Li, W. An improved meshless numerical manifold method for simulating complex boundary seepage problems. Comput. Geotech. 2023, 155, 105211. [Google Scholar] [CrossRef]
- Su, H.; Lin, S.; Xie, Z.; Gong, Y.; Qi, Y. Fundamentals and progress of the manifold method based on independent covers. Sci. China Technol. Sci. 2024, 67, 966–991. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, Q.; Chen, T.; Yong, L. Explicit Numerical Manifold Characteristic Galerkin Method for Solving Burgers’ Equation. Axioms 2024, 13, 343. [Google Scholar] [CrossRef]
- Hopf, E. The partial differential equation ut + uux = μuxx. Commun. Pure Appl. Math. 1950, 3, 201–230. [Google Scholar] [CrossRef]
- Fahmy, E.; Raslan, K.R.; Abdusalam, H. On the exact and numerical solution of the time-delayed Burgers equation. Int. J. Comput. Math. 2008, 85, 1637–1648. [Google Scholar] [CrossRef]
- Kudryashov, N.A.; Sinelshchikov, D.I. Exact solutions of equations for the Burgers hierarchy. Appl. Math. Comput. 2009, 215, 1293–1300. [Google Scholar] [CrossRef]
- Ohwada, T. Cole-Hopf transformation as numerical tool for the Burgers equation. Appl. Comput. Math 2009, 8, 107–113. [Google Scholar]
- Cordero, A.; Franques, A.; Torregrosa, J.R. Numerical solution of turbulence problems by solving Burgers’ equation. Algorithms 2015, 8, 224–233. [Google Scholar] [CrossRef]
- Uddin, M.; Ali, H. The space–time kernel-based numerical method for Burgers’ equations. Mathematics 2018, 6, 212. [Google Scholar] [CrossRef]
- Al-shimmary, A.F.; Kareem, S.; Hussain, A.K. A new approach to solve Burges’ equation using Runge-Kutta 6th order method based on Cole-Hopf transformation. J. Eng. Appl. Sci. 2020, 15, 2362–2369. [Google Scholar]
- Abd-Elhameed, W.M. Novel expressions for the derivatives of sixth kind Chebyshev polynomials: Spectral solution of the non-linear one-dimensional Burgers’ equation. Fractal Fract. 2021, 5, 53. [Google Scholar] [CrossRef]
- Savović, S.; Ivanović, M.; Min, R. A Comparative Study of the Explicit Finite Difference Method and Physics-Informed Neural Networks for Solving the Burgers’ Equation. Axioms 2023, 12, 982. [Google Scholar] [CrossRef]
- Singh, G.; Singh, I.; AlDerea, A.M.; Alanzi, A.M.; Khalifa, H.A.E.W. Solutions of (2+1)-D & (3+1)-D Burgers Equations by New Laplace Variational Iteration Technique. Axioms 2023, 12, 647. [Google Scholar] [CrossRef]
- Öziş, T.; Aksan, E.; Özdeş, A. A finite element approach for solution of Burgers’ equation. Appl. Math. Comput. 2003, 139, 417–428. [Google Scholar] [CrossRef]
- Guo-Zhong, Z.; Xi-Jun, Y.; Di, W. Numerical solution of the Burgers’ equation by local discontinuous Galerkin method. Appl. Math. Comput. 2010, 216, 3671–3679. [Google Scholar] [CrossRef]
- Mukundan, V.; Awasthi, A. Efficient numerical techniques for Burgers’ equation. Appl. Math. Comput. 2015, 262, 282–297. [Google Scholar] [CrossRef]
- Shu, C.W. Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 1988, 9, 1073–1084. [Google Scholar] [CrossRef]
- Shi, G.H. Modeling dynamic rock failure by discontinuous deformation analysis with simplex integrations. In Proceedings of the ARMA North America Rock Mechanics Symposium, Austin, TX, USA, 1–3 June 1994. [Google Scholar]
- Lin, S.; Xie, Z. A new recursive formula for integration of polynomial over simplex. Appl. Math. Comput. 2020, 376, 125140. [Google Scholar] [CrossRef]
T | x | Exact | EFCGM [20] | ENMCGM [40] | Present | |||
---|---|---|---|---|---|---|---|---|
0.4 | 0.25 | 0.308894 | 0.308892 | 7.21 | 0.308901 | 2.19 | 0.308859 | 1.14 |
0.50 | 0.569632 | 0.569629 | 6.06 | 0.569705 | 1.27 | 0.569603 | 5.08 | |
0.75 | 0.625438 | 0.625446 | 1.30 | 0.625473 | 5.61 | 0.625460 | 3.61 | |
0.6 | 0.25 | 0.240739 | 0.240747 | 3.31 | 0.240737 | 8.40 | 0.240718 | 8.61 |
0.50 | 0.447206 | 0.447214 | 1.90 | 0.447261 | 1.24 | 0.447184 | 4.73 | |
0.75 | 0.487215 | 0.487214 | 2.00 | 0.487215 | 5.16 | 0.487219 | 9.21 | |
0.8 | 0.25 | 0.195676 | 0.195679 | 1.75 | 0.195665 | 5.40 | 0.195659 | 8.56 |
0.50 | 0.359236 | 0.359241 | 1.38 | 0.359269 | 9.17 | 0.359214 | 6.16 | |
0.75 | 0.373922 | 0.373923 | 3.33 | 0.373893 | 7.69 | 0.373911 | 3.00 | |
1.0 | 0.25 | 0.162565 | 0.162560 | 2.99 | 0.162547 | 1.10 | 0.162554 | 6.92 |
0.50 | 0.291916 | 0.291919 | 1.04 | 0.291928 | 4.13 | 0.291900 | 5.38 | |
0.75 | 0.287474 | 0.287472 | 8.37 | 0.287426 | 1.68 | 0.287464 | 3.45 |
T | x | Exact | EFCGM [20] | Ref. [40] | Present | |||
---|---|---|---|---|---|---|---|---|
0.4 | 0.25 | 0.341915 | 0.341914 | 2.73 | 0.342154 | 6.99 | 0.341947 | 9.38 |
0.50 | 0.660711 | 0.660712 | 1.56 | 0.660903 | 2.91 | 0.661311 | 9.08 | |
0.75 | 0.910265 | 0.910256 | 9.39 | 0.910337 | 7.96 | 0.911848 | 1.74 | |
0.6 | 0.25 | 0.268965 | 0.268958 | 2.55 | 0.269190 | 8.37 | 0.268971 | 2.30 |
0.50 | 0.529418 | 0.529426 | 1.46 | 0.529653 | 4.43 | 0.529732 | 5.92 | |
0.75 | 0.767243 | 0.767247 | 4.85 | 0.767409 | 2.16 | 0.768302 | 1.38 | |
0.8 | 0.25 | 0.221482 | 0.221491 | 4.10 | 0.221680 | 8.94 | 0.221479 | 1.09 |
0.50 | 0.439138 | 0.439142 | 8.54 | 0.439380 | 5.51 | 0.439314 | 3.99 | |
0.75 | 0.647395 | 0.647438 | 6.61 | 0.647604 | 3.22 | 0.648058 | 1.02 | |
1.0 | 0.25 | 0.188194 | 0.188193 | 5.11 | 0.188367 | 9.19 | 0.188189 | 2.81 |
0.50 | 0.374420 | 0.374423 | 7.91 | 0.374653 | 6.22 | 0.374524 | 2.79 | |
0.75 | 0.556051 | 0.556051 | 5.31 | 0.556273 | 4.00 | 0.556476 | 7.64 |
N | ||||||
---|---|---|---|---|---|---|
50 | 1.62 | 1.62 | 1.63 | 2.39 | 1.63 | 2.39 |
100 | 4.04 | 4.06 | 4.06 | 5.97 | 4.06 | 5.97 |
200 | 1.01 | 1.02 | 1.02 | 1.49 | 1.02 | 1.49 |
400 | 2.53 | 2.54 | 2.54 | 3.73 | 2.54 | 3.73 |
800 | 6.31 | 6.35 | 6.35 | 9.32 | 6.35 | 9.32 |
1600 | 1.58 | 1.59 | 1.59 | 2.33 | 1.59 | 2.33 |
x | ||||||||
---|---|---|---|---|---|---|---|---|
Ref. [40] | Present | Ref. [40] | Present | |||||
0.1 | 0.00653527 | 2.68 | 0.00653544 | 4.13 | 0.00065750 | 2.14 | 0.00065750 | 4.11 |
0.2 | 0.01305544 | 8.02 | 0.01305533 | 4.13 | 0.00131383 | 4.91 | 0.00131383 | 4.11 |
0.3 | 0.01949374 | 5.35 | 0.01949363 | 4.13 | 0.00196281 | 6.73 | 0.00196281 | 4.11 |
0.4 | 0.02565934 | 3.54 | 0.02565924 | 4.13 | 0.00258576 | 2.41 | 0.00258576 | 4.11 |
0.5 | 0.03110745 | 1.97 | 0.03110738 | 4.13 | 0.00313849 | 1.42 | 0.00313849 | 4.11 |
0.6 | 0.03492868 | 6.54 | 0.03492864 | 4.14 | 0.00352972 | 5.91 | 0.00352972 | 4.11 |
0.7 | 0.03549597 | 5.27 | 0.03549594 | 4.14 | 0.00359443 | 1.13 | 0.00359443 | 4.12 |
0.8 | 0.03050154 | 6.40 | 0.03050133 | 4.15 | 0.00309581 | 6.95 | 0.00309580 | 4.12 |
0.9 | 0.01816643 | 9.56 | 0.01816660 | 4.15 | 0.00184754 | 3.56 | 0.00184754 | 4.12 |
x | Exact | FVCW [15] | Ganaie [13] | Mittal [12] | Present | ||||
---|---|---|---|---|---|---|---|---|---|
0.1 | 0.06574976 | 0.06574976 | 2.78 | 0.065750 | 3.66 | 0.065750 | 3.66 | 0.06574973 | 4.11 |
0.2 | 0.13138294 | 0.13138294 | 8.94 | 0.131383 | 4.91 | 0.131383 | 4.91 | 0.13138288 | 4.11 |
0.3 | 0.19628087 | 0.19628087 | 1.37 | 0.196281 | 6.73 | 0.196281 | 6.73 | 0.19628079 | 4.11 |
0.4 | 0.25857574 | 0.25857574 | 1.21 | 0.258576 | 1.01 | 0.258576 | 1.01 | 0.25857563 | 4.11 |
0.5 | 0.31384936 | 0.31384935 | 1.07 | 0.313848 | 4.32 | 0.313850 | 2.05 | 0.31384923 | 4.11 |
0.6 | 0.35297182 | 0.35297179 | 1.00 | 0.352972 | 5.07 | 0.352972 | 5.07 | 0.35297168 | 4.11 |
0.7 | 0.35944286 | 0.35944291 | 1.33 | 0.359443 | 3.91 | 0.359443 | 3.91 | 0.35944271 | 4.12 |
0.8 | 0.30958038 | 0.30958039 | 9.47 | 0.309580 | 1.24 | 0.309579 | 4.47 | 0.30958026 | 4.12 |
0.9 | 0.18475374 | 0.18475374 | 3.45 | 0.184752 | 9.43 | 0.184751 | 1.48 | 0.18475367 | 4.12 |
T | x | Exact | Hassanien [4] | Sun [40] | Present | |||
---|---|---|---|---|---|---|---|---|
0.4 | 0.25 | 0.3175229 | 0.31752 | 9.07 | 0.3175292 | 1.99 | 0.3175169 | 1.89 |
0.5 | 0.5845373 | 0.58454 | 4.69 | 0.5846054 | 1.17 | 0.5845327 | 7.86 | |
0.75 | 0.6456155 | 0.64562 | 6.96 | 0.6456419 | 4.09 | 0.6456196 | 6.41 | |
0.6 | 0.25 | 0.2461385 | 0.24614 | 6.27 | 0.2461348 | 1.49 | 0.2461345 | 1.60 |
0.5 | 0.4579764 | 0.45798 | 7.85 | 0.4580298 | 1.17 | 0.4579721 | 9.37 | |
0.75 | 0.5026758 | 0.50268 | 8.45 | 0.5026707 | 1.00 | 0.5026757 | 1.87 | |
0.8 | 0.25 | 0.1995553 | 0.19956 | 2.35 | 0.1995441 | 5.62 | 0.1995525 | 1.39 |
0.5 | 0.3673982 | 0.3674 | 4.92 | 0.3674304 | 8.77 | 0.3673946 | 9.88 | |
0.75 | 0.3853355 | 0.38534 | 1.16 | 0.385303 | 8.44 | 0.3853338 | 4.54 | |
1.0 | 0.25 | 0.1655986 | 0.1656 | 8.26 | 0.1655804 | 1.10 | 0.1655965 | 1.27 |
0.5 | 0.2983431 | 0.29834 | 1.04 | 0.2983543 | 3.75 | 0.2983400 | 1.03 | |
0.75 | 0.2958567 | 0.29586 | 1.12 | 0.2958057 | 1.72 | 0.2958545 | 7.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Chen, Q.; Chen, T.; Yong, L. Explicit Runge–Kutta Numerical Manifold Method for Solving the Burgers’ Equation via the Hopf–Cole Transformation. Symmetry 2024, 16, 1521. https://doi.org/10.3390/sym16111521
Sun Y, Chen Q, Chen T, Yong L. Explicit Runge–Kutta Numerical Manifold Method for Solving the Burgers’ Equation via the Hopf–Cole Transformation. Symmetry. 2024; 16(11):1521. https://doi.org/10.3390/sym16111521
Chicago/Turabian StyleSun, Yue, Qian Chen, Tao Chen, and Longquan Yong. 2024. "Explicit Runge–Kutta Numerical Manifold Method for Solving the Burgers’ Equation via the Hopf–Cole Transformation" Symmetry 16, no. 11: 1521. https://doi.org/10.3390/sym16111521
APA StyleSun, Y., Chen, Q., Chen, T., & Yong, L. (2024). Explicit Runge–Kutta Numerical Manifold Method for Solving the Burgers’ Equation via the Hopf–Cole Transformation. Symmetry, 16(11), 1521. https://doi.org/10.3390/sym16111521