Lack of Brain Asymmetry in the Alpha Band During the Observation of Object Grasping in Reality Versus on Screen
Abstract
:1. Introduction
1.1. Perception in Reality Versus On Screen
1.2. Brain Asymmetry When Watching Audiovisuals
1.3. Looking at Motor Actions
1.4. Media Expertise
2. Materials and Methods
2.1. Participants
2.2. Stimuli
2.3. Data Acquisition
2.4. Data Analysis
3. Results
3.1. Asymmetry in the Alpha Band
3.2. Asymmetry and Media Professional Status
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martín-Pascual, M.Á.; Andreu-Sánchez, C.; Delgado-García, J.M.; Gruart, A. Differences in Perceiving Narratives Through Screens or Reality. In Advances in Cognitive Neurodynamics (VI); Delgado-García, J.M., Pan, X., Sánchez-Campusano, R., Wang, R., Eds.; Springer: Singapore, 2018; pp. 365–369. ISBN 978-981-10-8854-4. [Google Scholar]
- Andreu-Sánchez, C.; Martín-Pascual, M.Á.; Gruart, A.; Delgado-García, J.M. Looking at reality versus watching screens: Media professionalization effects on the spontaneous eyeblink rate. PLoS ONE 2017, 12, e0176030. [Google Scholar] [CrossRef] [PubMed]
- Andreu-Sánchez, C.; Martín-Pascual, M.Á.; Gruart, A.; Delgado-García, J.M. Differences in Mu rhythm when seeing grasping/motor actions in a real context versus on screens. Sci. Rep. 2024, 14, 22921. [Google Scholar] [CrossRef] [PubMed]
- Muppalla, S.K.; Vuppalapati, S.; Reddy Pulliahgaru, A.; Sreenivasulu, H. Effects of Excessive Screen Time on Child Development: An Updated Review and Strategies for Management. Cureus 2023, 15, e40608. [Google Scholar] [CrossRef]
- Grassini, S.; Segurini, G.V.; Koivisto, M. Watching Nature Videos Promotes Physiological Restoration: Evidence from the Modulation of Alpha Waves in Electroencephalography. Front. Psychol. 2022, 13, 871143. [Google Scholar] [CrossRef]
- Gao, C.; Green, J.J.; Yang, X.; Oh, S.; Kim, J.; Shinkareva, S.V. Audiovisual integration in the human brain: A coordinate-based meta-analysis. Cereb. Cortex 2023, 33, 5574–5584. [Google Scholar] [CrossRef]
- Kong, X.Z.; Postema, M.C.; Guadalupe, T.; de Kovel, C.; Boedhoe, P.S.W.; Hoogman, M.; Mathias, S.R.; van Rooij, D.; Schijven, D.; Glahn, D.C.; et al. Mapping brain asymmetry in health and disease through the ENIGMA consortium. Hum. Brain Mapp. 2022, 43, 167–181. [Google Scholar] [CrossRef]
- Ahernt, G.; Schwartz, G. Differential Lateralization for Positive and Negative Emotion in the Human Brain: EEG Spectral Analysis. Neuropsychologia 1985, 23, 745–755. [Google Scholar] [CrossRef]
- Sharpley, C.F.; Bitsika, V.; Shadli, S.M.; Jesulola, E.; Agnew, L.L. Alpha wave asymmetry is associated with only one component of melancholia, and in different directions across brain regions. Psychiatry Res. Neuroimaging 2023, 334, 111687. [Google Scholar] [CrossRef]
- Barros, C.; Pereira, A.R.; Sampaio, A.; Buján, A.; Pinal, D. Frontal Alpha Asymmetry and Negative Mood: A Cross-Sectional Study in Older and Younger Adults. Symmetry 2022, 14, 1579. [Google Scholar] [CrossRef]
- Sun, L.; Peräkylä, J.; Hartikainen, K.M. Frontal alpha asymmetry, a potential biomarker for the effect of neuromodulation on brain’s affective circuitry-preliminary evidence from a deep brain stimulation study. Front. Hum. Neurosci. 2017, 11, 584. [Google Scholar] [CrossRef]
- Cartocci, G.; Maglione, A.G.; Vecchiato, G.; Modica, E.; Rossi, D.; Malerba, P.; Marsella, P.; Scorpecci, A.; Giannantonio, S.; Mosca, F.; et al. Frontal brain asymmetries as effective parameters to assess the quality of audiovisual stimuli perception in adult and young cochlear implant users. Acta Otorhinolaryngol. Ital. 2018, 38, 346–360. [Google Scholar] [CrossRef] [PubMed]
- Morillon, B.; Lehongre, K.; Frackowiak, R.S.J.; Ducorps, A.; Kleinschmidt, A.; Poeppel, D.; Giraud, A.L. Neurophysiological origin of human brain asymmetry for speech and language. Proc. Natl. Acad. Sci. USA 2010, 107, 18688–18693. [Google Scholar] [CrossRef] [PubMed]
- Andreu-Sánchez, C.; Martín-Pascual, M.Á.; Gruart, A.; Delgado-García, J.M. Brain Symmetry in Alpha Band When Watching Cuts in Movies. Symmetry 2022, 14, 1980. [Google Scholar] [CrossRef]
- Maglione, A.G.; Scorpecci, A.; Malerba, P.; Marsella, P.; Giannantonio, S.; Colosimo, A.; Babiloni, F.; Vecchiato, G. Alpha EEG frontal asymmetries during audiovisual perception in cochlear implant users: A study with bilateral and unilateral young users. Methods Inf. Med. 2015, 54, 500–504. [Google Scholar] [CrossRef]
- Rihs, T.A.; Michel, C.M.; Thut, G. Mechanisms of selective inhibition in visual spatial attention are indexed by a-band EEG synchronization. Eur. J. Neurosci. 2007, 25, 603–610. [Google Scholar] [CrossRef]
- Cochin, S.; Barthelemy, C.; Lejeune, B.; Roux, S.; Martineau, J. Perception of motion and qEEG activity in human adults. Electroencephalogr. Clin. Neurophysiol. 1998, 107, 287–295. [Google Scholar] [CrossRef]
- Klimesch, W. Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn. Sci. 2012, 16, 606–617. [Google Scholar] [CrossRef]
- Gollan, J.K.; Hoxha, D.; Chihade, D.; Pflieger, M.E.; Rosebrock, L.; Cacioppo, J. Frontal alpha EEG asymmetry before and after behavioral activation treatment for depression. Biol. Psychol. 2014, 99, 198–208. [Google Scholar] [CrossRef]
- Smalley, S.L.; Hanada, G.; Macion, J.; Mccracken, J.T. Atypical alpha asymmetry in adults with ADHD. Neuropsychologia 2009, 47, 2082–2088. [Google Scholar] [CrossRef]
- Fischer, N.L.; Peres, R.; Fiorani, M. Frontal alpha asymmetry and theta oscillations associated with information sharing intention. Front. Behav. Neurosci. 2018, 12, 166. [Google Scholar] [CrossRef]
- McFarland, D.J.; Miner, L.A.; Vaughan, T.M.; Wolpaw, J.R. Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr. 2000, 12, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Castiello, U. The Neuroscience of Grasping. Nat. Rev. Neurosci. 2005, 6, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Perry, A.; Bentin, S. Mirror activity in the human brain while observing hand movements: A comparison between EEG desynchronization in the mu-range and previous fMRI results. Brain Res. 2009, 1282, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Debnath, R.; Salo, V.C.; Buzzell, G.A.; Yoo, K.H.; Fox, N.A. Mu rhythm desynchronization is specific to action execution and observation: Evidence from time-frequency and connectivity analysis. Neuroimage 2019, 184, 496–507. [Google Scholar] [CrossRef] [PubMed]
- Nakayashiki, K.; Saeki, M.; Takata, Y.; Hayashi, Y.; Kondo, T. Modulation of event-related desynchronization during kinematic and kinetic hand movements. J. Neuroeng. Rehabil. 2014, 11, 90. [Google Scholar] [CrossRef]
- Ying, R.; Weisz, J.; Allen, P.K. Grasping with your brain: A brain-computer interface for fast grasp selection. In Robotics Research; Springer: Berlin/Heidelberg, Germany, 2017; pp. 325–340. [Google Scholar]
- Lebedev, M.A.; Nicolelis, M.A.L. Brain-machine interfaces: Past, present and future. Trends Neurosci. 2006, 29, 536–546. [Google Scholar] [CrossRef]
- Grosse-Wentrup, M. Understanding brain connectivity patterns during motor imagery for Brain-Computer Interfacing. In Proceedings of the Advances in Neural Information Processing Systems 21, Proceedings of the 2008 Conference, Vancouver, BC, Canada, 8 December 2009; pp. 561–568. [Google Scholar]
- Pattnaik, P.K.; Sarraf, J. Brain Computer Interface issues on hand movement. J. King Saud Univ. Comput. Inf. Sci. 2018, 30, 18–24. [Google Scholar] [CrossRef]
- Bernardi, G.; Ricciardi, E.; Sani, L.; Gaglianese, A.; Papasogli, A.; Ceccarelli, R.; Franzoni, F.; Galetta, F.; Santoro, G.; Goebel, R.; et al. How Skill Expertise Shapes the Brain Functional Architecture: An fMRI Study of Visuo-Spatial and Motor Processing in Professional Racing-Car and Naïve Drivers. PLoS ONE 2013, 8, e77764. [Google Scholar] [CrossRef]
- Kirk, U.; Skov, M.; Schram Christensen, M.; Nygaard, N. Brain correlates of aesthetic expertise: A parametric fMRI study. Brain Cogn. 2008, 69, 306–315. [Google Scholar] [CrossRef]
- Paraskevopoulos, E.; Kraneburg, A.; Herholz, S.C.; Bamidis, P.D.; Pantev, C. Musical expertise is related to altered functional connectivity during audiovisual integration. Proc. Natl. Acad. Sci. USA 2015, 112, 12522–12527. [Google Scholar] [CrossRef]
- Bilalić, M. The Neuroscience of Expertise; Cambridge University Press: Padstow Cornwall, 2017; ISBN 9781316026847. [Google Scholar]
- Andreu-Sánchez, C.; Martín-Pascual, M.Á.; Gruart, A.; Delgado-García, J.M. Beta-band differences in primary motor cortex between media and non-media professionals when watching motor actions in movies. Front. Neurosci. 2023, 17, 1204809. [Google Scholar] [CrossRef] [PubMed]
- Andreu-Sánchez, C.; Martín-Pascual, M.Á.; Gruart, A.; Delgado-García, J.M. The Effect of Media Professionalization on Cognitive Neurodynamics During Audiovisual Cuts. Front. Syst. Neurosci. 2021, 1, 598383. [Google Scholar] [CrossRef] [PubMed]
- Keogh, R. Reality check: How do we know what’s real? Trends Cogn. Sci. 2024, 28, 279–280. [Google Scholar] [CrossRef]
- Kundel, H.L.; Nodine, C.F.; Conant, E.F.; Weinstein, S.P. Holistic component of image perception in mammogram interpretation: Gaze-tracking study. Radiology 2007, 242, 396–402. [Google Scholar] [CrossRef]
- Gegenfurtner, A.; Lehtinen, E.; Säljö, R. Expertise Differences in the Comprehension of Visualizations: A Meta-Analysis of Eye-Tracking Research in Professional Domains. Educ. Psychol. Rev. 2011, 23, 523–552. [Google Scholar] [CrossRef]
- Jasper, H.H. The ten twenty electrode system of the International Federation. Report of the committee on methods of clinical examination in electroencephalography. Electroencephalogr. Clin. Neurophysiol. 1958, 10, 371–375. [Google Scholar] [CrossRef]
- Wang, X.H.; Zhang, T.; Xu, X.M.; Chen, L.; Xing, X.F.; Chen, C.L.P. EEG Emotion Recognition Using Dynamical Graph Convolutional Neural Networks and Broad Learning System. In Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018; IEEE: New York, NY, USA, 2019; Volume 11, pp. 1240–1244. [Google Scholar] [CrossRef]
- Hu, F.; Zhang, L.; Yang, X.; Zhang, W.A. EEG-Based Driver Fatigue Detection Using Spatio-Temporal Fusion Network with Brain Region Partitioning Strategy. IEEE Trans. Intell. Transp. Syst. 2024, 25, 9618–9630. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef]
- Mathewson, K.J.; Hashemi, A.; Sheng, B.; Sekuler, A.B.; Bennett, P.J.; Schmidt, L.A. Regional electroencephalogram (EEG) alpha power and asymmetry in older adults: A study of short-term test-retest reliability. Front. Aging Neurosci. 2015, 7, 177. [Google Scholar] [CrossRef]
- Davidson, R.J. Emotion and Affective Style: Hemispheric Substrates. Psychol. Sci. 1992, 3, 39–43. [Google Scholar] [CrossRef]
- Wang, Z.; Member, G.S.; Liu, Y. Enhancing ERD Activation and Functional Connectivity via the Sixth-Finger Motor Imagery in Stroke Patients. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 3902–3912. [Google Scholar] [CrossRef] [PubMed]
- Buzsáki, G. Cognitive neuroscience: Time, space and memory. Nature 2013, 497, 568–569. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, N.; Fleming, S.M. Subjective signal strength distinguishes reality from imagination. Nat. Commun. 2023, 14, 1627. [Google Scholar] [CrossRef]
- Anderson, K.L.; Ding, M. Attentional modulation of the somatosensory mu rhythm. Neuroscience 2011, 180, 165–180. [Google Scholar] [CrossRef]
- Cho, H.; Ahn, M.; Ahn, S.; Kwon, M.; Jun, S.C. EEG datasets for motor imagery brain–computer interface. Giga Sci. 2017, 6, gix034. [Google Scholar] [CrossRef]
- Andreu-Sánchez, C.; Martín-Pascual, M.Á.; Gruart, A.; Delgado-García, J.M. Eyeblink rate watching classical Hollywood and post-classical MTV editing styles, in media and non-media professionals. Sci. Rep. 2017, 7, 43267. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andreu-Sánchez, C.; Martín-Pascual, M.Á.; Gruart, A.; Delgado-García, J.M. Lack of Brain Asymmetry in the Alpha Band During the Observation of Object Grasping in Reality Versus on Screen. Symmetry 2024, 16, 1534. https://doi.org/10.3390/sym16111534
Andreu-Sánchez C, Martín-Pascual MÁ, Gruart A, Delgado-García JM. Lack of Brain Asymmetry in the Alpha Band During the Observation of Object Grasping in Reality Versus on Screen. Symmetry. 2024; 16(11):1534. https://doi.org/10.3390/sym16111534
Chicago/Turabian StyleAndreu-Sánchez, Celia, Miguel Ángel Martín-Pascual, Agnès Gruart, and José María Delgado-García. 2024. "Lack of Brain Asymmetry in the Alpha Band During the Observation of Object Grasping in Reality Versus on Screen" Symmetry 16, no. 11: 1534. https://doi.org/10.3390/sym16111534
APA StyleAndreu-Sánchez, C., Martín-Pascual, M. Á., Gruart, A., & Delgado-García, J. M. (2024). Lack of Brain Asymmetry in the Alpha Band During the Observation of Object Grasping in Reality Versus on Screen. Symmetry, 16(11), 1534. https://doi.org/10.3390/sym16111534