Bilateral Correlational Behavior of Pyroglutamate Aminopeptidase I Activity in Rat Photoneuroendocrine Locations During a Standard 12:12 h Light–Dark Cycle
Abstract
:1. Introduction
2. Material and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- O’Cuinn, G.; O’Connor, B.; Elmore, M. Degradation of thyrotropin-releasing hormone and luteinising hormone-releasing hormone by enzymes of brain tissue. J. Neurochem. 1990, 54, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, L.; Cacciatore, I.; Di Stefano, A.; Duprè, S.; Giorgi, A.; Luisi, G.; Michelotto, B.; Orlando, G.; Pinnen, F.; Recinella, L.; et al. Synthesis and biological evaluation of a novel pyroglutamyl-modified TRH analogue. Farmaco 2002, 57, 479–486. [Google Scholar] [CrossRef]
- Alba, F.; Arenas, J.C.; Lopez, M.A. Comparison of soluble and membrane-bound pyroglutamyl peptidase I activities in rat brain tissues in the presence of detergents. Neuropeptides 1995, 29, 103–107. [Google Scholar] [CrossRef]
- Jiang, H.; Gong, Q.; Zhang, R. Pyroglutamyl aminopeptidase 1 is a potential molecular target toward diagnosing and treating inflammation. Front. Immunol. 2023, 14, 1301539. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, M.; Sanchez, B.; Arechaga, G.; Garcia, S.; Lardelli, P.; Venzon, D.; de Gandarias, J.M. Diurnal variation and left-right distribution of pyroglutamyl peptidase I activity in the rat brain and retina. Acta Endocrinol. 1991, 125, 570–573. [Google Scholar] [CrossRef]
- Teclemariam-Mesbah, R.; Ter Horst, G.J.; Postema, F.; Wortel, J.; Buijs, R.M. Anatomical demonstration of the suprachiasmatic nucleus-pineal pathway. J. Comp. Neurol. 1999, 406, 171–182. [Google Scholar] [CrossRef]
- Korf, H.W.; Oksche, A.; Ekström, P.; Gery, I.; Zigler, J.S., Jr.; Klein, D.C. Pinealocyte projections into the mammalian brain revealed with S-antigen antiserum. Science 1986, 231, 735–737. [Google Scholar] [CrossRef] [PubMed]
- Saeb-Parsy, K.; Lombardelli, S.; Khan, F.Z.; McDowall, K.; Au-Yong, I.T.; Dyball, R.E. Neural connections of hypothalamic neuroendocrine nuclei in the rat. J. Neuroendocrinol. 2000, 12, 635–648. [Google Scholar] [CrossRef] [PubMed]
- Youngstrom, T.G.; Weiss, M.L.; Nunez, A.A. Retinofugal projections to the hypothalamus, anterior thalamus and basal forebrain in hamsters. Brain Res. Bull. 1991, 26, 403–411. [Google Scholar] [CrossRef]
- Cusick, C.G.; Lund, R.D. The distribution of the callosal projection to the occipital visual cortex in rats and mice. Brain Res. 1981, 214, 239–259. [Google Scholar] [CrossRef]
- Klosen, P. Thirty-seven years of MT1 and MT2 melatonin receptor localization in the brain: Past and future challenges. J. Pineal Res. 2024, 76, e12955. [Google Scholar] [CrossRef] [PubMed]
- Felder-Schmittbuhl, M.P.; Hicks, D.; Ribelayga, C.P.; Tosini, G. Melatonin in the mammalian retina: Synthesis, mechanisms of action and neuroprotection. J. Pineal Res. 2024, 76, e12951. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, M.; Prieto, I.; Banegas, I.; Segarra, A.B.; Alba, F. Neuropeptidases. Methods Mol. Biol. 2011, 789, 287–294. [Google Scholar] [PubMed]
- Konig, J.F.R.; Klippel, R.A. The Rat Brain; Krieger: Huntington, NY, USA, 1967. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Kuczynski-Noyau, L.; Karmann, S.; Alberton, P.; Martinez-Corral, I.; Nampoothiri, S.; Sauvé, F.; Lhomme, T.; Quarta, C.; Apte, S.S.; Bouret, S.; et al. A plastic aggrecan barrier modulated by peripheral energy state gates metabolic signal access to arcuate neurons. Nat. Commun. 2024, 15, 6701. [Google Scholar] [CrossRef]
- Saeb-Parsy, K.; Dyball, R.E. Defined cell groups in the rat suprachiasmatic nucleus have different day/night rhythms of single-unit activity in vivo. J. Biol. Rhythms 2003, 18, 26–42. [Google Scholar] [CrossRef]
- Page, A.J.; Christie, S.; Symonds, E.; Li, H. Circadian regulation of appetite and time restricted feeding. Physiol. Behav. 2020, 220, 112873. [Google Scholar] [CrossRef]
- Lechan, R.M.; Fekete, C. The TRH neuron: A hypothalamic integrator of energy metabolism. Prog. Brain Res. 2006, 153, 209–235. [Google Scholar]
- Vargas, Y.; Castro Tron, A.E.; Rodríguez Rodríguez, A.; Uribe, R.M.; Joseph-Bravo, P.; Charli, J.L. Thyrotropin-Releasing Hormone and Food Intake in Mammals: An Update. Metabolites 2024, 14, 302. [Google Scholar] [CrossRef]
- Umehara, H.; Mizuguchi, H.; Fukui, H. Identification of a histaminergic circuit in the caudal hypothalamus: An evidence for functional heterogeneity of histaminergic neurons. Neurochem. Int. 2012, 61, 942–947. [Google Scholar] [CrossRef]
- Monti, J.M. Involvement of histamine in the control of the waking state. Life Sci. 1993, 53, 1331–1338. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; McCormack, S.; España, R.A.; Crocker, A.; Scammell, T.E. Afferents to the orexin neurons of the rat brain. J. Comp. Neurol. 2006, 494, 845–861. [Google Scholar] [CrossRef] [PubMed]
- Drew, J.E.; Barrett, P.; Mercer, J.G.; Moar, K.M.; Canet, E.; Delagrange, P.; Morgan, P.J. Localization of the melatonin-related receptor in the rodent brain and peripheral tissues. J. Neuroendocrinol. 2001, 13, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.M.; Hannah, L.T.; Hastings, M.H.; Maywood, E.S. Melatonin receptors in the rat brain and pituitary. J. Pineal Res. 1995, 19, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Buonfiglio, D.; Tchio, C.; Furigo, I.; Donato, J., Jr.; Baba, K.; Cipolla-Neto, J.; Tosini, G. Removing melatonin receptor type 1 signaling leads to selective leptin resistance in the arcuate nucleus. J. Pineal Res. 2019, 67, e12580. [Google Scholar] [CrossRef]
- Sánchez, B.; Alba, F.; Luna, J.D.; Martínez, J.M.; Prieto, I.; Ramírez, M. Pyroglutamyl peptidase I levels and their left-right distribution in the rat retina and hypothalamus are influenced by light-dark conditions. Brain Res. 1996, 731, 254–257. [Google Scholar] [CrossRef]
- Ramírez, M.; Arechaga, G.; Martínez, J.M.; Prieto, I.; Ramírez-Expósito, M.J.; Sánchez, B.; Alba, F. Environmental light-darkness conditions induce changes in brain and peripheral pyroglutamyl-peptidase I activity. Neurochem. Res. 2001, 26, 463–468. [Google Scholar] [CrossRef]
- Domínguez-Vías, G.; Aretxaga, G.; Prieto, I.; Segarra, A.B.; Luna, J.D.; Martínez-Cañamero, M.; Ramírez-Sánchez, M. Asymmetrical influence of a standard light/dark cycle and constant light conditions on the alanyl-aminopeptidase activity of the left and right retinas in adult male rats. Exp. Eye Res. 2020, 198, 108149. [Google Scholar] [CrossRef]
- Ramírez-Sánchez, M.; Prieto, I.; Segarra, A.B.; Banegas, I.; Martínez-Cañamero, M.; Domínguez-Vías, G.; de Gasparo, M. Brain Asymmetry: Towards an Asymmetrical Neurovisceral Integration. Symmetry 2021, 13, 2409. [Google Scholar] [CrossRef]
ReL and ReR vs. Rest Diurnal | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ReL | ReR | APt | PPt | AHtL | AHtR | PHtL | PHtR | SCGL | SCGR | OCL | OCR | Pi | S | |
ReL 07 h (n = 11) | 1 | r 0.241 p 0.475 | r 0.598 p 0.052 | r 0.609 p 0.046 | r 0.413 p 0.206 | r 0.380 p 0.249 | r 0.608 p 0.047 | r 0.541 p 0.085 | r 0.521 p 0.100 | r 0.475 p 0.139 | r 0.461 p 0.153 | r 0.339 p 0.307 | r 0.464 p 0.150 | r 0.394 p 0.230 |
ReR 07 h (n = 11) | r 0.241 p 0.475 | 1 | r 0.747 p 0.008 | r 0.668 p 0.024 | r 0.609 p 0.046 | r 0.630 p 0.037 | r 0.569 p 0.067 | r 0.738 p 0.009 | r 0.806 p 0.002 | r 0.726 p 0.011 | r 0.733 p 0.010 | r 0.792 p 0.003 | r 0.531 p 0.092 | r 0.116 p 0.734 |
ReL 10 h (n = 8) | 1 | r 0.772 p 0.024 | r 0.464 p 0.246 | r 0.283 p 0.497 | r 0.312 p 0.451 | r 0.015 p 0.971 | r 0.542 p 0.165 | r 0.437 p 0.279 | r 0.302 p 0.467 | r 0.045 p 0.915 | r 0.354 p 0.389 | r 0.799 p 0.017 | r 0.263 p 0.529 | r 0.343 p 0.405 |
ReR 10 h (n = 8) | r 0.772 p 0.024 | 1 | r 0.279 p 0.503 | r 0.475 p 0.234 | r 0.684 p 0.061 | r 0.437 p 0.279 | r 0.664 p 0.072 | r 0.684 p 0.061 | r 0.367 p 0.371 | r 0.112 p 0.791 | r 0.500 p 0.207 | r 0.763 p 0.027 | r 0.630 p 0.094 | r 0.272 p 0.514 |
ReL 13 h (n = 6) | 1 | r 0.873 p 0.023 | r 0.463 p 0.355 | r 0.454 p 0.365 | r 0.008 p 0.988 | r 0.145 p 0.784 | r 0.238 p 0.649 | r −0.09 p 0.852 | r 0.497 p 0.315 | r 0.576 p 0.231 | r 0.816 p 0.047 | r 0.324 p 0.531 | r 0.628 p 0.181 | r 0.662 p 0.152 |
ReR 13 h (n = 6) | r 0.873 p 0.023 | 1 | r 0.235 p 0.654 | r 0.572 p 0.235 | r 0.341 p 0.508 | r 0.388 p 0.447 | r 0.674 p 0.142 | r −0.453 p 0.367 | r 0.391 p 0.443 | r 0.496 p 0.317 | r 0.760 p 0.079 | r 0.334 p 0.517 | r 0.381 p 0.456 | r 0.668 p 0.147 |
ReL 16 h (n = 6) | 1 | r 0.322 p 0.533 | r −0.67 p 0.144 | r 0.001 p 0.998 | r 0.424 p 0.402 | r 0.476 p 0.339 | r 0.737 p 0.094 | r 0.705 p 0.117 | r−0.08 p 0.868 | r 0.323 p 0.532 | r −0.11 p 0.882 | r 0.801 p 0.055 | r −0.380 p 0.457 | r −0.26 p 0.618 |
ReR 16 h (n = 6) | r 0.322 p 0.533 | 1 | r −0.03 p 0.943 | r 0.520 p 0.290 | r 0.382 p 0.454 | r 0.825 p 0.043 | r 0.746 p 0.088 | r 0.875 p 0.022 | r 0.284 p 0.585 | r 0.804 p 0.053 | r 0.428 p 0.397 | r 0.315 p 0.543 | r 0.256 p 0.624 | r 0.202 p 0.701 |
ReL 22 h (n = 6) | 1 | r 0.852 p 0.031 | r 0.933 p 0.006 | r 0.406 p 0.424 | r −0.325 p 0.529 | r −0.16 p 0.759 | r 0.658 p 0.155 | r 0.705 p 0.117 | r 0.416 p 0.412 | r 0.875 p 0.022 | r 0.793 p 0.059 | r 0.964 p 0.001 | r 0.892 p 0.016 | r −0.22 p 0.663 |
ReR 22 h (n = 6) | r 0.852 p 0.031 | 1 | r 0.832 p 0.04 | r 0.172 p 0.744 | r −0.655 p 0.158 | r −0.35 p 0.487 | r 0.612 p 0.196 | r 0.659 p 0.154 | r 0.247 p 0.637 | r 0.626 p 0.183 | r 0.607 p 0.201 | r 0.877 p 0.021 | r 0.715 p 0.110 | r −0.50 p 0.303 |
ReL 01 h (n = 8) | 1 | r 0.560 p 0.148 | r 0.594 p 0.120 | r 0.277 p 0.506 | r −0.131 p 0.757 | r −0.12 p 0.766 | r −0.32 p 0.433 | r −0.31 p 0.453 | r 0.078 p 0.854 | r 0.175 p 0.678 | r 0.384 p 0.347 | r 0.754 p 0.030 | r −0.380 p 0.353 | r 0.282 p 0.498 |
ReR 01 h (n = 8) | r 0.560 p 0.148 | r 0.921 p 0.001 | r 0.541 p 0.166 | r −0.491 p 0.216 | r −0.30 p 0.467 | r −0.29 p 0.473 | r −0.08 p 0.835 | r 0.783 p 0.021 | r 0.623 p 0.098 | r 0.841 p 0.008 | r 0.434 p 0.282 | r 0.471 p 0.238 | r 0.548 p 0.159 | |
ReL 04 h (n = 8) | 1 | r 0.373 p 0.362 | r 0.287 p 0.490 | r 0.072 p 0.865 | r −0.077 p 0.856 | r −0.29 p 0.482 | r −0.76 p 0.026 | r −0.08 p 0.843 | r 0.628 p 0.095 | r 0.510 p 0.196 | r 0.503 p 0.203 | r 0.549 p 0.158 | r 0.021 p 0.960 | r 0.361 p 0.379 |
ReR 04 h (n = 8) | r 0.373 p 0.362 | 1 | r 0.395 p 0.332 | r −0.30 p 0.467 | r −0.235 p 0.575 | r −0.58 p 0.130 | r 0.036 p 0.932 | r −0.28 p 0.490 | r 0.170 p 0.687 | r 0.233 p 0.578 | r 0.921 p 0.001 | r 0.498 p 0.209 | r 0.118 p 0.780 | r 0.720 p 0.044 |
Left vs. Right Diurnal | |||||
---|---|---|---|---|---|
Re | AHt | PHt | SCG | OC | |
07 h (n = 11) | r 0.241 p 0.475 | r 0.930 p < 0.0001 | r 0.929 p < 0.0001 | r 0.924 p < 0.0001 | r 0.934 p < 0.0001 |
10 h (n = 8) | r 0.772 p 0.024 | r 0.678 p 0.064 | r 0.801 p 0.016 | r 0.697 p 0.054 | r 0.710 p 0.048 |
13 h (n = 6) | r 0.873 p 0.023 | r 0.967 p 0.001 | r −0.820 p 0.045 | r 0.900 p 0.014 | r 0.662 p 0.152 |
16 h (n = 6) | r 0.322 p 0.533 | r 0.804 p 0.053 | r 0.948 p 0.004 | r 0.626 p 0.183 | r 0.287 p 0.581 |
22 h (n = 6) | r 0.852 p 0.031 | r 0.772 p 0.072 | r 0.981 p.0005 | r 0.471 p 0.345 | r 0.840 p 0.036 |
01 h (n = 8) | r 0.560 p 0.148 | r 0.871 p 0.004 | r 0.955 p.0002 | r 0.766 p 0.026 | r 0.601 p 0.115 |
04 h (n = 8) | r 0.373 p 0.362 | r 0.358 p 0.383 | r 0.467 p 0.243 | r 0.712 p 0.047 | r 0.474 p 0.235 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Sánchez, M.; Prieto, I.; Segarra, A.B.; Banegas, I.; Martínez-Cañamero, M.; Domínguez-Vías, G.; Durán, R.; Vives, F. Bilateral Correlational Behavior of Pyroglutamate Aminopeptidase I Activity in Rat Photoneuroendocrine Locations During a Standard 12:12 h Light–Dark Cycle. Symmetry 2024, 16, 1539. https://doi.org/10.3390/sym16111539
Ramírez-Sánchez M, Prieto I, Segarra AB, Banegas I, Martínez-Cañamero M, Domínguez-Vías G, Durán R, Vives F. Bilateral Correlational Behavior of Pyroglutamate Aminopeptidase I Activity in Rat Photoneuroendocrine Locations During a Standard 12:12 h Light–Dark Cycle. Symmetry. 2024; 16(11):1539. https://doi.org/10.3390/sym16111539
Chicago/Turabian StyleRamírez-Sánchez, Manuel, Isabel Prieto, Ana Belén Segarra, Inmaculada Banegas, Magdalena Martínez-Cañamero, Germán Domínguez-Vías, Raquel Durán, and Francisco Vives. 2024. "Bilateral Correlational Behavior of Pyroglutamate Aminopeptidase I Activity in Rat Photoneuroendocrine Locations During a Standard 12:12 h Light–Dark Cycle" Symmetry 16, no. 11: 1539. https://doi.org/10.3390/sym16111539
APA StyleRamírez-Sánchez, M., Prieto, I., Segarra, A. B., Banegas, I., Martínez-Cañamero, M., Domínguez-Vías, G., Durán, R., & Vives, F. (2024). Bilateral Correlational Behavior of Pyroglutamate Aminopeptidase I Activity in Rat Photoneuroendocrine Locations During a Standard 12:12 h Light–Dark Cycle. Symmetry, 16(11), 1539. https://doi.org/10.3390/sym16111539