Improved Fractional Differences with Kernels of Delta Mittag–Leffler and Exponential Functions
Abstract
:1. Introduction
- A new delta exponential and ML function with some special cases are proposed in the context of -discrete fractional calculus.
- Some properties of the proposed delta ML functions have been addressed by utilizing Laplace transformations and sum/difference rules.
- The concept of the -CF and -AB fractional sums and differences are introduced based on the new delta exponential and Mittag–Leffler functions.
- In conclusion, some properties of the -CF and -AB fractional difference operators are provided based on the Laplace transformation on the left and right sides.
2. Preliminaries
- (i)
- .
- (ii)
- , for and .
- (i)
- .
- (ii)
- .
- (iii)
- .
3. Delta ML Functions and Related Operators
3.1. Delta Fractional Differences with Exponential Kernels
- (a)
- The -CF of Liouville–Caputo type on the left side byfor .
- (b)
- The -CF of Liouville–Caputo type on the right side byfor .
- (c)
- The -CF of Riemann–Liouville type on the left side byfor .
- (d)
- The -CF of Riemann–Liouville type on the right side as follows:for .
- (i)
- As , we have
- (ii)
- As , we have
- (i)
- ,
- (ii)
- .
- (i)
- ,
- (ii)
- .
3.2. Delta Fractional Differences with ML Kernels
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goodrich, C.; Peterson, A.C. Discrete Fractional Calculus; Springer: New York, NY, USA, 2015. [Google Scholar]
- Cabada, A.; Dimitrov, N. Nontrivial solutions of non-autonomous Dirichlet fractional discrete problems. Fract. Calc. Appl. Anal. 2020, 23, 980–995. [Google Scholar] [CrossRef]
- Zhang, X.-L.; Yu, Y.; Wang, H.; Feng, J. Stability analysis of discrete-time tempered fractional-order neural networks with time delays. Fract. Calc. Appl. Anal. 2024, 27, 1972–1993. [Google Scholar] [CrossRef]
- Atici, F.M.; Atici, M.; Belcher, M.; Marshall, D. A new approach for modeling with discrete fractional equations. Fund. Inform. 2017, 151, 313–324. [Google Scholar]
- You, X.; Song, Q.; Zhao, Z. Existence and finite-time stability of discrete fractional-order complex-valued neural networks with time delays. Neural Netw. 2020, 123, 248–260. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, Y.; Wei, Y.; Zhao, X. Lyapunov stability analysis for nonlinear nabla tempered fractional order systems. Asian J. Control 2023, 25, 3057–3066. [Google Scholar] [CrossRef]
- Ortigueira, M. Discrete-time fractional difference calculus: Origins, evolutions, and new formalisms. Fractal Fract. 2023, 7, 502. [Google Scholar] [CrossRef]
- Jia, B.; Du, F.; Erbe, L.; Peterson, A. Asymptotic behavior of nabla half order h-difference equations. J. Appl. Anal. Comput. 2018, 8, 1707–1726. [Google Scholar]
- Liu, X.; Yu, Y. Synchronization analysis for discrete fractional-order complex-valued neural networks with time delays. Neural Comput. Appl. 2021, 33, 10503–10514. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Srivastava, H.M.; Baleanu, D.; Al-Sarairah, E.; Yousif, M.A.; Chorfi, N. Analytical and approximate monotone solutions of the mixed order fractional nabla operators subject to bounded conditions. Math. Comp. Model. Dyn. 2024, 30, 626–639. [Google Scholar] [CrossRef]
- Mohammed, P.O. An analysis of exponential kernel fractional difference operator for delta positivity. Nonlinear Eng. 2024, 13, 20220377. [Google Scholar] [CrossRef]
- Chen, C.R.; Bohner, M.; Jia, B.G. Ulam-Hyers stability of Caputo fractional difference equations. Math. Meth. Appl. Sci. 2019, 42, 7461–7470. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley-Interscience Publisher: New York, NY, USA, 1993. [Google Scholar]
- Cesarano, C. Generalized special functions in the description of fractional diffusive equations. Commun. Appl. Ind. Math. 2019, 10, 31–40. [Google Scholar] [CrossRef]
- Jajarmi, A.; Baleanu, D.; Sajjadi, S.S.; Nieto, J.J. Analysis and some applications of a regularized Ψ-Hilfer fractional derivative. J. Comput. Appl. Math. 2022, 415, 114476. [Google Scholar] [CrossRef]
- Baleanu, D.; Jajarmi, A.; Hajipour, M. On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag–Leffler Kernel. Nonlinear Dyn. 2018, 94, 397–414. [Google Scholar] [CrossRef]
- Abdeljawad, T. On Riemann and Caputo fractional differences. Comput. Math. Appl. 2011, 62, 1602–1611. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Baleanu, D. Discrete fractional differences with nonsingular discrete Mittag–Leffler kernels. Adv. Differ. Equ. 2016, 2016, 232. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Al-Mdallal, Q.M.; Hajji, M.A. Arbitrary order fractional difference operators with discrete exponential kernels and applications. Discret. Dyn. Nat. Soc. 2017, 2017, 4149320. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T.; Hamasalh, F.K. On Riemann–Liouville and Caputo fractional forward difference monotonicity analysis. Mathematics 2021, 9, 1303. [Google Scholar] [CrossRef]
- Nagai, A. Discrete Mittag–Leffler function and its applications. Publ. Res. Inst. Math. Sci. Kyoto Univ. 2003, 1302, 1–20. [Google Scholar]
- Wu, G.C.; Baleanu, D.; Zeng, S.D.; Luo, W.H. Mittag–Leffler function for discrete fractional modelling. J. King Saud Univ. Sci. 2016, 28, 99–102. [Google Scholar] [CrossRef]
- Atici, F.M.; Chang, S.; Jonnalagadda, J.M. Mittag–Leffler functions in discrete time. Fractal Fract. 2023, 7, 254. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T.; Hamasalh, F.K. Discrete Prabhakar fractional difference and sum operators. Chaos Soliton. Fract. 2021, 150, 111182. [Google Scholar] [CrossRef]
- Saenko, V.V. The calculation of the Mittag–Leffler function. Int. J. Comput. Math. 2022, 99, 1367–1394. [Google Scholar] [CrossRef]
- Abdeljawad, T. Different type kernel h–fractional differences and their fractional h–sums. Chaos Solit. Fract. 2018, 116, 146–156. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T. Discrete generalized fractional operators defined using h-discrete Mittag–Leffler kernels and applications to AB fractional difference systems. Math. Meth. Appl. Sci. 2020, 46, 7688–7713. [Google Scholar] [CrossRef]
- Fereira, R.; Torres, D. Fractional h–difference equations arising from the calculus of variations. Appl. Anal. Discret. Math. 2011, 5, 110–121. [Google Scholar] [CrossRef]
- Abdeljawad, T. Dual identities in fractional difference calculus within Riemann. Adv. Differ. Equ. 2013, 2013, 36. [Google Scholar] [CrossRef]
- Abdeljawad, T. On delta and nabla caputo fractional differences and dual identities. Discr. Dynam. Nat. Soc. 2013, 2013, 12. [Google Scholar] [CrossRef]
- Mohammed, P.O. On the delta Mittag–Leffler functions and its application in monotonic analysis. J. Comput. Appl. Math. 2025. accepted. [Google Scholar]
- Mohammed, P.O.; Kürt, C.; Abdeljawad, T. Bivariate discrete Mittag–Leffler functions with associated discrete fractional operators. Chaos Solit. Fractals 2022, 165, 112848. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, Y.; Luo, Z.; Liu, J. A spatial sixth-order numerical scheme for solving fractional partial differential equation. Appl. Math. Lett. 2025, 159, 109265. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vivas-Cortez, M.; Mohammed, P.O.; Guirao, J.L.G.; Yousif, M.A.; Ibrahim, I.S.; Chorfi, N. Improved Fractional Differences with Kernels of Delta Mittag–Leffler and Exponential Functions. Symmetry 2024, 16, 1562. https://doi.org/10.3390/sym16121562
Vivas-Cortez M, Mohammed PO, Guirao JLG, Yousif MA, Ibrahim IS, Chorfi N. Improved Fractional Differences with Kernels of Delta Mittag–Leffler and Exponential Functions. Symmetry. 2024; 16(12):1562. https://doi.org/10.3390/sym16121562
Chicago/Turabian StyleVivas-Cortez, Miguel, Pshtiwan Othman Mohammed, Juan L. G. Guirao, Majeed A. Yousif, Ibrahim S. Ibrahim, and Nejmeddine Chorfi. 2024. "Improved Fractional Differences with Kernels of Delta Mittag–Leffler and Exponential Functions" Symmetry 16, no. 12: 1562. https://doi.org/10.3390/sym16121562
APA StyleVivas-Cortez, M., Mohammed, P. O., Guirao, J. L. G., Yousif, M. A., Ibrahim, I. S., & Chorfi, N. (2024). Improved Fractional Differences with Kernels of Delta Mittag–Leffler and Exponential Functions. Symmetry, 16(12), 1562. https://doi.org/10.3390/sym16121562