Bubble Behavior and Surface Liquid Film Characteristics of Air Bubbles Crossing the Oil–Water Interface
Abstract
:1. Introduction
2. Experimental and Numerical Calculation Scheme of Air Bubbles Crossing the Oil–Water Interface
2.1. Experimental Systems and Solutions
2.2. Numerical Calculation Scheme
2.2.1. Governing Equations and Solution Method
2.2.2. Determination of the Calculation Basin and Initial Boundary Conditions
2.2.3. Mesh Size Independence
2.2.4. Computational Model Validation
3. Results and Discussion
3.1. Bubble Rise Trajectory
3.2. Transient Behavior and Liquid Film Properties of Bubbles Crossing the Oil–Water Interface
3.2.1. Transient Behavior and Liquid Film Characteristics of a 2 mm Diameter Bubble at the Oil–Water Interface
3.2.2. Transient Behavior and Liquid Film Characteristics of a 4 mm Diameter Bubble at the Oil–Water Interface
3.2.3. Transient Behavior and Liquid Film Characteristics of a 6 mm Diameter Bubble at the Oil–Water Interface
3.3. Effect of Bubble Rising Rate and Bubble Size on Eo Number
3.3.1. Analysis of Bubble Rising Rate in the Oil–Water Coexisting Liquid Phase
3.3.2. Analysis of the Effect of Bubble Size on Eo Number
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chu, F.; Yang, L.; Du, X.; Yang, Y. Mass transfer and energy consumption for CO2 absorption by ammonia solution in bubble column. Appl. Energy 2017, 190, 1068–1080. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, J.J.J.; Zhou, N. Characteristics of jet droplet produced by bubble bursting on the free liquid surface. Chem. Eng. Sci. 2012, 68, 151–156. [Google Scholar] [CrossRef]
- Guan, X.; Yang, N. Bubble properties measurement in bubble columns: From homogeneous to heterogeneous regime. Chem. Eng. Res. Des. 2017, 127, 103–112. [Google Scholar] [CrossRef]
- Risso, F. Agitation, Mixing, and Transfers Induced by Bubbles. Annu. Rev. Fluid Mech. 2018, 50, 25–48. [Google Scholar] [CrossRef]
- Hessenkemper, H.; Ziegenhein, T.; Lucas, D. Contamination effects on the lift force of ellipsoidal air bubbles rising in saline water solutions. Chem. Eng. J. 2020, 386, 121589. [Google Scholar] [CrossRef]
- Kosior, D.; Zawala, J.; Todorov, R.; Exerowa, D.; Malysa, K. Bubble bouncing and stability of liquid films formed under dynamic and static conditions from n-octanol solutions. Colloids Surf. A 2014, 460, 391–400. [Google Scholar] [CrossRef]
- Hallez, Y.; Legendre, D. Interaction between two spherical bubbles rising in a viscous liquid. J. Fluid Mech. 2011, 673, 406–431. [Google Scholar] [CrossRef]
- Hasan, N.; binti Zakaria, Z. Computational approach for a pair of bubble coalescence process. Int. J. Heat Fluid Flow 2011, 32, 755–761. [Google Scholar] [CrossRef]
- Rabha, S.S.; Buwa, V.V. Volume-of-fluid (VOF) simulations of rise of single/multiple bubbles in sheared liquids. Chem. Eng. Sci. 2010, 65, 527–537. [Google Scholar] [CrossRef]
- Saito, T.; Toriu, M. Effects of a bubble and the surrounding liquid motions on the instantaneous mass transfer across the gas-liquid interface. Chem. Eng. J. 2015, 265, 164–175. [Google Scholar] [CrossRef]
- Premlata, A.R.; Tripathi, M.K.; Karri, B.; Sahu, K.C. Numerical and experimental investigations of an air bubble rising in a Carreau-Yasuda shear-thinning liquid. Phys. Fluids 2017, 29, 033103. [Google Scholar] [CrossRef]
- Tripathi, M.K.; Sahu, K.C.; Govindarajan, R. Dynamics of an initially spherical bubble rising in quiescent liquid. Nat. Commun. 2015, 6, 6268. [Google Scholar] [CrossRef] [PubMed]
- Sharaf, D.M.; Premlata, A.R.; Tripathi, M.K.; Karri, B.; Sahu, K.C. Shapes and paths of an air bubble rising in quiescent liquids. Phys. Fluids 2017, 29, 122104. [Google Scholar] [CrossRef]
- Mirsandi, H.; Kong, G.; Buist, K.A.; Baltussen, M.W.; Peters, E.A.J.F.; Kuipers, J.A.M. Numerical study on the interaction of two bubbles rising side-by-side in viscous liquids. Chem. Eng. J. 2021, 410, 128257. [Google Scholar] [CrossRef]
- Dietrich, N.; Poncin, S.; Pheulpin, S.; Li, H.Z. Passage of a bubble through a liquid-liquid interface. AIChE J. 2008, 54, 594–600. [Google Scholar] [CrossRef]
- Singh, K.K.; Bart, H.-J. Passage of a Single Bubble through a Liquid-Liquid Interface. Ind. Eng. Chem. Res. 2015, 54, 9478–9493. [Google Scholar] [CrossRef]
- Emery, T.S.; Raghupathi, P.A.; Kandlikar, S.G. Flow Regimes and Transition Criteria during Passage of Bubbles through a Liquid-Liquid Interface. Langmuir 2018, 34, 6766–6776. [Google Scholar] [CrossRef]
- Takagaki, N.; Komori, S. Air-water mass transfer mechanism due to the impingement of a single liquid drop on the air-water interface. Int. J. Multiph. Flow 2014, 60, 30–39. [Google Scholar] [CrossRef]
- Zawala, J.; Wiertel, A.; Niecikowska, A.; Malysa, K. Influence of external vibrations on bubble coalescence time at water and oil surfaces-Experiments and modelling. Colloids Surf. A 2017, 519, 137–145. [Google Scholar] [CrossRef]
- Tian, Z.L.; Liu, Y.L.; Zhang, A.M.; Wang, S.P. Analysis of breaking and re-closure of a bubble near a free surface based on the Eulerian finite element method. Comput. Fluids 2018, 170, 41–52. [Google Scholar] [CrossRef]
- Wang, S.; Duan, W.; Wang, Q. The bursting of a toroidal bubble at a free surface. Ocean Eng. 2015, 109, 611–622. [Google Scholar] [CrossRef]
- Duchemin, L.; Popinet, S.; Josserand, C.; Zaleski, S. Jet formation in bubbles bursting at a free surface. Phys. Fluids 2002, 14, 3000–3008. [Google Scholar] [CrossRef]
- Zawala, J.; Malysa, K. Influence of the Impact Velocity and Size of the Film Formed on Bubble Coalescence Time at Water Surface. Langmuir 2011, 27, 2250–2257. [Google Scholar] [CrossRef] [PubMed]
- Mao, N.; Kang, C.; Teng, S.; Mulbah, C. Formation and detachment of the enclosing water film as a bubble passes through the water-oil interface. Colloids Surf. A 2020, 586, 124236. [Google Scholar] [CrossRef]
- Colombet, D.; Legendre, D.; Risso, F.; Cockx, A.; Guiraud, P. Dynamics and mass transfer of rising bubbles in a homogenous swarm at large gas volume fraction. J. Fluid Mech. 2015, 763, 254–285. [Google Scholar] [CrossRef]
- Tan, J.; Lu, Y.C.; Xu, J.H.; Luo, G.S. Modeling investigation of mass transfer of gas-liquid-liquid dispersion systems. Sep. Purif. Technol. 2013, 108, 111–118. [Google Scholar] [CrossRef]
- Li, E.Q.; Al-Otaibi, S.A.; Vakarelski, I.U.; Thoroddsen, S.T. Satellite formation during bubble transition through an interface between immiscible liquids. J. Fluid Mech. 2014, 744, R1. [Google Scholar] [CrossRef]
- Bonhomme, R.; Magnaudet, J.; Duval, F.; Piar, B. Inertial dynamics of air bubbles crossing a horizontal fluid-fluid interface. J. Fluid Mech. 2012, 707, 405–443. [Google Scholar] [CrossRef]
- Singh, K.K.; Gebauer, F.; Bart, H.J. Bouncing of a bubble at a liquid-liquid interface. AIChE J. 2017, 63, 3150–3157. [Google Scholar] [CrossRef]
- Cano-Lozano, J.C.; Bolanos-Jimenez, R.; Gutierrez-Montes, C.; Martinez-Bazan, C. The use of Volume of Fluid technique to analyze multiphase flows: Specific case of bubble rising in still liquids. Appl. Math. Model. 2015, 39, 3290–3305. [Google Scholar] [CrossRef]
- Yamoah, S.; Owusu-Manu, C.K.; Akaho, E.H.K. nNumerical investigation of bubble interaction mechanisms in gas-liquid bubbly flows: Harmonisation of bubble breakup and coalescence effects. Int. J. Multiph. Flow 2021, 144, 103781. [Google Scholar] [CrossRef]
- Balla, M.; Tripathi, M.K.; Matar, O.K.; Sahu, K.C. Interaction of two non-coalescing bubbles rising in a non-isothermal self-rewetting fluid. Eur. J. Mech. B Fluids. 2021, 87, 103–112. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Meredith, J.C.; Behrens, S.H.; Tripathi, M.K.; Sahu, K.C. The dynamics of rising oil-coated bubbles: Experiments and simulations. Soft Matter 2018, 14, 2724–2734. [Google Scholar] [CrossRef] [PubMed]
- Gemello, L.; Cappello, V.; Augier, F.; Marchisio, D.; Plais, C. CFD-based scale-up of hydrodynamics and mixing in bubble columns. Chem. Eng. Res. Des. 2018, 136, 846–858. [Google Scholar] [CrossRef]
- Wang, X.; Dong, H.; Zhang, X.; Yu, L.; Zhang, S.; Xu, Y. Numerical simulation of single bubble motion in ionic liquids. Chem. Eng. Sci. 2010, 65, 6036–6047. [Google Scholar] [CrossRef]
- Desai, A.; Mittal, S.; Mittal, S. Experimental investigation of vortex shedding past a circular cylinder in the high subcritical regime. Phys. Fluids 2020, 32, 014105. [Google Scholar] [CrossRef]
- Maeda, K.; Date, M.; Sugiyama, K.; Takagi, S.; Matsumoto, Y. Viscid-inviscid interactions of pairwise bubbles in a turbulent channel flow and their implications for bubble clustering. J. Fluid Mech. 2021, 919, A30. [Google Scholar] [CrossRef]
- Chen, R.H.; Tian, W.X.; Su, G.H.; Qiu, S.Z.; Ishiwatari, Y.; Oka, Y. Numerical investigation on coalescence of bubble pairs rising in a stagnant liquid. Chem. Eng. Sci. 2011, 66, 5055–5063. [Google Scholar] [CrossRef]
- Innocenti, A.; Jaccod, A.; Popinet, S.; Chibbaro, S. Direct numerical simulation of bubble-induced turbulence. J. Fluid Mech. 2021, 918, A23. [Google Scholar] [CrossRef]
- Abdulmouti, H. Experimental measurements of bubble convection models in two-phase stratified liquids. Exp. Therm. Fluid Sci. 2017, 83, 69–77. [Google Scholar] [CrossRef]
- Luo, J.; Xu, W.; Khoo, B.C. Stratification effect of air bubble on the shock wave from the collapse of cavitation bubble. J. Fluid Mech. 2021, 919, A16. [Google Scholar] [CrossRef]
- Riviere, A.; Mostert, W.; Perrard, S.; Deike, L. Sub-Hinze scale bubble production in turbulent bubble break-up. J. Fluid Mech. 2021, 917, A40. [Google Scholar] [CrossRef]
- Premlata, A.R.; Tripathi, M.K.; Karri, B.; Sahu, K.C. Dynamics of an air bubble rising in a non-Newtonian liquid in the axisymmetric regime. J. Non-Newton. Fluid Mech. 2017, 239, 53–61. [Google Scholar] [CrossRef]
- Kipping, R.; Wagner, M.; Hampel, U. On Inter-bubble distances and bubble clustering in bubbly Flows: An experimental study. Chem. Eng. J. 2022, 431, 133486. [Google Scholar] [CrossRef]
Liquid | ρ (kg m−3) | μ (kg m−1s−1) | σ (N m−1) |
---|---|---|---|
Water | 0.998 × 103 | 1.01 × 10−3 | 7.28 × 10−2 |
5# White oil | 0.819 × 103 | 5.13 × 10−3 | 3.55 × 10−2 |
15# White oil | 0.832 × 103 | 16.42 × 10−3 | 3.32 × 10−2 |
32# White oil | 0.841 × 103 | 34.23 × 10−3 | 3.16 × 10−2 |
Time | 25 ms | 50 ms | 75 ms | 100 ms | 125 ms |
Experiment | 0.843 | 0.854 | 0.742 | 0.635 | 0.572 |
Numerical Calculation | 0.932 | 0.827 | 0.716 | 0.615 | 0.534 |
Relative Error (%) | 10.6 | 3.2 | 3.5 | 3.1 | 6.6 |
Nozzle diameter (mm) | 2 | 4 | 6 |
Water | 2.65 | 4.75 | 6.97 |
White oil | 2.14 | 4.17 | 6.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Jiang, B.; Xiao, X.; Yang, N.; Sun, Y.; Zhang, L. Bubble Behavior and Surface Liquid Film Characteristics of Air Bubbles Crossing the Oil–Water Interface. Symmetry 2024, 16, 1564. https://doi.org/10.3390/sym16121564
Li Y, Jiang B, Xiao X, Yang N, Sun Y, Zhang L. Bubble Behavior and Surface Liquid Film Characteristics of Air Bubbles Crossing the Oil–Water Interface. Symmetry. 2024; 16(12):1564. https://doi.org/10.3390/sym16121564
Chicago/Turabian StyleLi, Yixin, Bin Jiang, Xiaoming Xiao, Na Yang, Yongli Sun, and Luhong Zhang. 2024. "Bubble Behavior and Surface Liquid Film Characteristics of Air Bubbles Crossing the Oil–Water Interface" Symmetry 16, no. 12: 1564. https://doi.org/10.3390/sym16121564
APA StyleLi, Y., Jiang, B., Xiao, X., Yang, N., Sun, Y., & Zhang, L. (2024). Bubble Behavior and Surface Liquid Film Characteristics of Air Bubbles Crossing the Oil–Water Interface. Symmetry, 16(12), 1564. https://doi.org/10.3390/sym16121564