Canonical Construction of Invariant Differential Operators: A Review
Abstract
:1. Introduction and Preliminaries
- An important ingredient in our considerations are the highest/lowest-weight representations of . These can be realized as (factor-modules of) Verma modules over , where , is a Cartan subalgebra of and weight is determined uniquely from [76].
- Another main ingredient of our approach is as follows. We group the (reducible) ERs with the same Casimirs in sets called multiplets [76]. The multiplet corresponding to fixed values of the Casimirs may be depicted as a connected graph, the vertices of which correspond to the reducible ERs and the lines (arrows) between the vertices correspond to intertwining operators. The explicit parameterization of the multiplets and of their ERs is important in understanding of the situation. The notion of multiplets was introduced in [116] and applied to representations of and , resp., induced from their minimal parabolic subalgebras. Then it was applied to the conformal superalgebra [117], to infinite-dimensional (super)algebras [113] and to quantum groups [112]. (For other applications, we refer to [114].)
2. Conformal Algebras and Parabolically Related Algebras
- Interlude:
3. The Lie Algebra and Parabolically Related Algebras
4. The Lie Algebras and (-even)
5. The Lie Algebra
5.1. Case of
5.2. Case of
5.3. Case of
6. The Lie Algebras and
7. The Lie Algebras , and
8. The Lie Algebra
9. The Case of Lie Algebra
9.1. Induction from Minimal Parabolic
Main Multiplets
9.2. Induction from Maximal Parabolics
9.2.1. Main Multiplets When Inducing from
9.2.2. Main Multiplets When Induction from
Funding
Data Availability Statement
Conflicts of Interest
References
- Maldacena, J.M. Large N Field Theories, String Theory and Gravity. In Lectures on Quantum Gravity; Series of the Centro De Estudios Scientificos; Gomberoff, A., Marolf, D., Eds.; Springer: New York, NY, USA, 2005; pp. 91–150. [Google Scholar]
- Terning, J. Modern Supersymmetry: Dynamics and Duality; International Series of Monographs on Physics # 132; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Chandra, H. Discrete series for semisimple Lie groups, II. Acta Math. 1966, 116, 1–111. [Google Scholar] [CrossRef]
- Bernstein, I.N.; Gelfand, I.M.; Gelfand, S.I. Structure of representations possessing a highest weight. Funct. Anal. Appl. 1971, 5, 1–8. (in Russian). [Google Scholar] [CrossRef]
- Bernstein, I.N.; Gelfand, I.M.; Gelfand, S.I. Differential operators on the base affine space and a study of g-modules. In Lie Groups and Their Representations; Gelfand, I.M., Ed.; Halsted Press: New York, NY, USA, 1975; pp. 21–64. [Google Scholar]
- Warner, G. Harmonic Analysis on Semi-Simple Lie Groups I; Springer: Berlin/Heidelberg, Germany, 1972. [Google Scholar]
- Langlands, R.P. On the classification of irreducible representations of real algebraic groups. Math. Surv. Monogr. 1988, 31, 101–170. [Google Scholar]
- Ferrara, S.; Wess, J.; Zumino, B. Supergauge multiplets and superfields. Phys. Lett. B 1974, 51, 239. [Google Scholar] [CrossRef]
- Ferrara, S.; Zumino, B. Supergauge invariant Yang-Mills theories. Nucl. Phys. B 1974, 79, 413. [Google Scholar] [CrossRef]
- Ferrara, S.; Zumino, B. Transformation properties of the supercurrent. Nucl. Phys. B 1975, 87, 207. [Google Scholar] [CrossRef]
- Zhelobenko, D.P. Harmonic Analysis on Semisimple Complex Lie Groups; Nauka: Moscow, Russian, 1974. [Google Scholar]
- Kostant, B. Verma Modules and the Existence of Quasi-Invariant Differential Operators; Lecture Notes in Mathematics; Dold, A., Eckmann, B., Eds.; Springer: Berlin/Heidelberg, Germany, 1975; Volume 466, pp. 101–128. [Google Scholar]
- Sokatchev, E. Projection Operators and Supplementary Conditions for Superfields with an Arbitrary Spin. Nucl. Phys. B 1975, 99, 96. [Google Scholar] [CrossRef]
- Sokatchev, E. Noncommutative Geometry and String Field Theory. Phys. Lett. B 1986, 169, 209. [Google Scholar] [CrossRef]
- Sokatchev, E. Harmonic superparticle. Class. Quant. Gravity 1987, 4, 237. [Google Scholar] [CrossRef]
- Freedman, D.Z.; van Nieuwenhuizen, P.; Ferrara, S. Progress Toward a Theory of Supergravity. Phys. Rev. D 1976, 13, 3214–3218. [Google Scholar] [CrossRef]
- Ferrara, S.; van Nieuwenhuizen, P. The Auxiliary Fields of Supergravity. Phys. Lett. B 1978, 74, 333. [Google Scholar] [CrossRef]
- Wolf, J. Unitary Representations of Maximal Parabolic Subgroups of the Classical Groups; Memoirs American Mathematical Society 180; AMS: Providence, RI, USA, 1976. [Google Scholar]
- Ademollo, M.; Brink, L.; D’Adda, A.; D’Auria, R.; Napolitano, E.; Sciuto, S.; Giudice, E.D.; Vecchia, P.D.; Ferrara, S.; Gliozzi, F.; et al. Supersymmetric Strings and Color Confinement. Phys. Lett. B 1976, 62, 105–110. [Google Scholar] [CrossRef]
- Ademollo, M.; Brink, L.; D’Adda, A.; D’Auria, R.; Napolitano, E.; Sciuto, S.; Giudice, E.D.; Vecchia, P.D.; Ferrara, S.; Gliozzi, F.; et al. Dual String with U(1) Color Symmetry. Nucl. Phys. B 1976, 111, 77–110. [Google Scholar] [CrossRef]
- Fayet, P.; Ferrara, S. Supersymmetry. Phys. Rep. 1977, 32, 249. [Google Scholar] [CrossRef]
- Wolf, J. Classification and Fourier Inversion for Parabolic Subgroups with Square Integrable Nilradical; Memoirs of the American Mathematical Society 225; AMS: Providence, RI, USA, 1979. [Google Scholar]
- Knapp, A.W.; Zuckerman, G.J. Lecture Notes in Math; Springer: Berlin/Heidelberg, Germany, 1977; Volume 587, pp. 138–159. [Google Scholar]
- Dobrev, V.K.; Mack, G.; Petkova, V.B.; Petrova, S.G.; Todorov, I.T. Harmonic Analysis on the n-Dimensional Lorentz Group and Its Application to Conformal Quantum Field Theory. Lect. Notes Phys. 1977, 63, 1–280. [Google Scholar]
- Dobrev, V.K.; Mack, G.; Petkova, V.B.; Petrova, S.G.; Todorov, I.T. On the Clebsch-Gordan Expansion for the Lorentz Group in n Dimensions. Rep. Math. Phys. 1976, 9, 219–246. [Google Scholar] [CrossRef]
- Dobrev, V.K.; Petkova, V.B.; Petrova, S.G.; Todorov, I.T. Dynamical Derivation of Vacuum Operator Product Expansion in Euclidean Conformal Quantum Field Theory. Phys. Rev. D 1976, 13, 887. [Google Scholar] [CrossRef]
- Ogievetsky, V.; Sokatchev, E. On Vector Superfield Generated by Supercurrent. Nucl. Phys. B 1977, 124, 309–316. [Google Scholar] [CrossRef]
- Ogievetsky, V.; Sokatchev, E. Structure of Supergravity Group. Phys. Lett. B 1978, 79, 222. [Google Scholar] [CrossRef]
- Cremmer, E.; Sherk, J.; Ferrara, S. SU(4) Invariant Supergravity Theory. Phys. Lett. B 1978, 74, 61–64. [Google Scholar] [CrossRef]
- Cremmer, E.; Ferrara, S.; Girardello, L.; Proeyen, A.V. Coupling Supersymmetric Yang-Mills Theories to Supergravity. Phys. Lett. B 1982, 116, 231–237. [Google Scholar] [CrossRef]
- Speh, B.; Vogan, D. Reducibility of generalized principal series representations. Acta Math. 1980, 145, 227–299. [Google Scholar] [CrossRef]
- Vogan, D. Representations of Real Reductive Lie Groups; Progress in Mathematics; Birkhäuser: Boston, MA, USA; Basel, Switzerland; Stuttgart, Germany, 1981; Volume 15. [Google Scholar]
- Enright, T.; Howe, R.; Wallach, N. Representations of Reductive Groups; Trombi, P., Ed.; Birkhäuser: Boston, MA, USA, 1983; pp. 97–143. [Google Scholar]
- Galperin, A.; Ivanov, E.; Kalitsyn, S.; Ogievetsky, V.; Sokatchev, E. Unconstrained N = 2 Matter, Yang-Mills and Supergravity Theories in Harmonic Superspace. Class. Quant. Gravity 1984, 1, 469–498, Erratum in Class. Quant. Gravity 1985, 2, 127. [Google Scholar] [CrossRef]
- Dobrev, V.K.; Petkova, V.B. All positive energy unitary irreducible representations of extended conformal supersymmetry. Phys. Lett. B 1985, 162, 127–132. [Google Scholar] [CrossRef]
- Dobrev, V.K.; Petkova, V.B. Group-Theoretical Approach to Extended Conformal Supersymmetry: Function Space Realizations and Invariant Differential Operators. Fortsch. Phys. 1987, 35, 537–572. [Google Scholar] [CrossRef]
- Dobrev, V.K. Characters of the unitarizable highest weight modules over the N = 2 superconformal algebras. Phys. Lett. B 1987, 186, 43–51. [Google Scholar] [CrossRef]
- Delduc, F.; Galperin, A.; Howe, P.S.; Sokatchev, E. A Twistor formulation of the heterotic D = 10 superstring with manifest (8,0) world sheet supersymmetry. Phys. Rev. D 1993, 47, 578–593. [Google Scholar] [CrossRef]
- Truini, P.; Varadarajan, V.S. Quantization of Reductive Lie Algebras: Construction and Universality. Rev. Math. Phys. 1993, 5, 363. [Google Scholar] [CrossRef]
- Jakobsen, H.P. Lecture Notes in Physics; Springer, Berlin/Heidelberg, Germany, 1986; Volume 261, pp. 253–265.
- Kac, V.G.; Wakimoto, M. Lie Theory and Geometry; Progress in Mathematics; Birkhäuser: Boston, MA, USA, 1994; Volume 123, pp. 415–456. [Google Scholar]
- Kobayashi, T.S. Discrete decomposability of the restriction of Aq(λ) with respect to reductive subgroups and its applications. Inv. Math. 1994, 117, 181–205. [Google Scholar] [CrossRef]
- Witten, E. On the Landau-Ginzburg description of N = 2 minimal models. Int. J. Mod. Phys. A 1994, 9, 4783–4800. [Google Scholar] [CrossRef]
- Witten, E. SL(2, Z) action on three-dimensional conformal field theories with abelian symmetry. In From Fields to Stings: Circumnavigating Theoretical Physics; Shifman, M., Vainshtein, A., Wheater, J., Eds.; World Scientific: Singapore, 2004; Volume 2, pp. 1173–1200. [Google Scholar]
- Argyres, P.C.; Presser, M.; Seiberg, N.; Witten, E. New N = 2 superconformal field theories in four dimensions. Nucl. Phys. B 1996, 461, 71–84. [Google Scholar] [CrossRef]
- Ferrara, S.; Harvey, J.A.; Strominger, A.; Vafa, C. Second-quantized mirror symmetry. Phys. Lett. B 1995, 361, 59. [Google Scholar] [CrossRef]
- Ceresole, A.; Dall’Agata, G.; D’Auria, R.; Ferrara, S. Spectrum of type IIB supergravity on AdS 5× T 11: Predictions on N = 1 SCFT’s. Phys. Rev. D 2000, 61, 066001. [Google Scholar] [CrossRef]
- Antoniadis, I.; Ferrara, S.; Minasian, R.; Narain, K.S. R4 couplings in M-and type II theories on Calabi-Yau spaces. Nucl. Phys. B 1997, 507, 571. [Google Scholar] [CrossRef]
- Branson, T.P.; Olafsson, G.; Orsted, B. Spectrum generating operators and intertwining operators for representations induced from a maximal parabolic subgroup. J. Funct. Anal. 1996, 135, 163–205. [Google Scholar] [CrossRef]
- Andrianopoli, L.; Ferrara, S.; Sokatchev, E.; Zupnik, B. Shortening of primary operators in N-extended SCFT_4 and harmonic-superspace analyticity. Adv. Theor. Math. Phys. 2000, 4, 1149. [Google Scholar]
- Ferrara, S.; Maldacena, J.M. Branes, central charges and U duality invariant BPS conditions. Class. Quant. Gravity 1998, 15, 749–758. [Google Scholar] [CrossRef]
- Ferrara, S.; Fronsdal, C. Conformal Maxwell theory as a singleton field theory on AdS, IIB 3-branes and duality. Class. Quant. Gravity 1998, 15, 2153. [Google Scholar] [CrossRef]
- Howe, P.S.; Sokatchev, E.; West, P.C. 3-point functions in N = 4 Yang-Mills. Phys. Lett. B 1998, 444, 341. [Google Scholar] [CrossRef]
- Aharony, O.; Gubser, S.S.; Maldacena, J.M.; Ooguri, H.; Oz, Y. Large N field theories, string theory and gravity. Phys. Rep. 2000, 323, 183–386. [Google Scholar] [CrossRef]
- Eden, B.; Petkou, A.C.; Schubert, C.; Sokatchev, E. Partial non-renormalisation of the stress-tensor four-point function in N = 4 SYM and AdS/CFT. Nucl. Phys. B 2001, 607, 191. [Google Scholar] [CrossRef]
- Dolan, L.; Nappi, C.R.; Witten, E. Conformal operators for partially massless states. J. High Energy Phys. 2001, 110, 16. [Google Scholar] [CrossRef]
- Arutyunov, G.; Eden, B.; Petkou, A.C.; Sokatchev, E. Exceptional non-renormalization properties and OPE analysis of chiral four-point functions in N = 4 SYM4. Nucl. Phys. B 2002, 620, 380. [Google Scholar] [CrossRef]
- Knapp, A.W. Lie Groups Beyond an Introduction, 2nd ed.; Progress in Mathematics; Birkhäuser: Boston, MA, USA; Basel, Switzerland; Stuttgart, Germany, 2002; Volume 140. [Google Scholar]
- Kac, V.; Roan, S.S.; Wakimoto, M. Quantum Reduction for AFfine Superalgebras. Comm. Math. Phys. 2003, 241, 307–342. [Google Scholar] [CrossRef]
- Ferrara, S.; Sokatchev, E. Universal properties of superconformal OPEs for 1/2 BPS operators in 3⩽D⩽6. New J. Phys. 2002, 4, 2. [Google Scholar] [CrossRef]
- Kostant, B. Powers of the Euler product and commutative subalgebras of a complex simple Lie algebra. Inv. Math. 2004, 158, 181–226. [Google Scholar] [CrossRef]
- Baur, K.; Wallach, N. Nice parabolic subalgebras of reductive Lie algebras. Represent. Theory 2005, 9, 1–29. [Google Scholar] [CrossRef]
- Gannon, T.; Vasudevan, M. Charges of exceptionally twisted branes. J. High Energy Phys. 2005, 507, 35. [Google Scholar] [CrossRef]
- Carmeli, C.; Cassinelli, G.; Toigo, A.; Varadarajan, V.S. Unitary representations of super Lie groups and applications to the classification and multiplet structure of super particles. Comm. Math. Phys. 2006, 263, 217. [Google Scholar] [CrossRef]
- Duff, M.J.; Ferrara, S. E6 and the bipartite entanglement of three qutrits. Phys. Rev. D 2007, 76, 124023. [Google Scholar] [CrossRef]
- Faraggi, A.E.; Kounnas, C.; Rizos, J. Spinor-Vector Duality in fermionic Z2× Z2 heterotic orbifold models. Nucl. Phys. B 2007, 774, 208–231. [Google Scholar] [CrossRef]
- Kinney, J.; Maldacena, J.M.; Minwalla, S.; Raju, S. An Index for 4 dimensional super conformal theories. Commun. Math. Phys. 2007, 275, 209–254. [Google Scholar] [CrossRef]
- Gurrieri, G.; Lukas, L.; Micu, A. Heterotic string compactifications on half-flat manifolds II. J. High Energy Phys. 2007, 712, 81. [Google Scholar] [CrossRef]
- Hofman, D.M.; Maldacena, J. Conformal collider physics: Energy and charge correlations. J. High Energy Phys. 2008, 5, 12. [Google Scholar] [CrossRef]
- Bernardoni, F.; Cacciatori, S.L.; Cerchiai, B.L.; Scotti, A. Mapping the geometry of the E6 group. J. Math. Phys. 2008, 49, 012107. [Google Scholar] [CrossRef]
- Kallosh, R.; Kugo, T. The footprint of E7(7) in amplitudes of N = 8 supergravity. J. High Energy Phys. 2009, 901, 072. [Google Scholar] [CrossRef]
- Mizoguchi, S. Localized modes in type II and heterotic singular Calabi-Yau conformal field theories. J. High Energy Phys. 2008, 811, 022. [Google Scholar] [CrossRef]
- Ferrara, S.; Kallosh, R.; Marrani, A. Degeneration of groups of type E7 and minimal coupling in supergravity. J. High Energy Phys. 2012, 1206, 074. [Google Scholar] [CrossRef]
- Petrov, A. New Methods in the General Theory of Relativity; Nauka: Moscow, Russia, 1966; 496p. [Google Scholar]
- Dobrev, V.K. Invariant differential operators for non-compact Lie groups: Parabolic subalgebras. Rev. Math. Phys. 2008, 20, 407–449. [Google Scholar] [CrossRef]
- Dobrev, V.K. Invariant Differential Operators, Volume 1: Noncompact Semisimple Lie Algebras and Groups; De Gruyter Studies in Mathematical Physics; De Gruyter: Berlin, Germany; Boston, MA, USA, 2016; Volume 35, pp. 408 + xii. ISBN 978-3-11-042764-6. [Google Scholar]
- Catto, S.; Choun, Y.S.; Kurt, L. Invariance properties of the exceptional quantum mechanics (F4) and its generalization to complex Jordan algebras (E6). In Lie Theory and Its Applications in Physics; Springer Proceedings in Mathematics & Statistics; Springer: Tokyo, Japan, 2013; Volume 36, p. 469. [Google Scholar]
- Alkalaev, K.B. Mixed-symmetry tensor conserved currents and AdS/CFT correspondence. J. Phys. A Math. Theor. 2013, 46, 214007. [Google Scholar] [CrossRef]
- Borsten, L.; Duff, M.J.; Ferrara, S.; Marrani, A. Freudenthal Dual Lagrangians. Class. Quant. Gravity 2013, 30, 235003. [Google Scholar] [CrossRef]
- Cacciatori, S.L.; Cerchiai, B.L.; Marrani, A. Magic coset decompositions. Adv. Theor. Math. Phys. 2013, 17, 1077–1128. [Google Scholar] [CrossRef]
- Chicherin, D.; Derkachov, S.; Isaev, A.P. Conformal group: R-matrix and star-triangle relation. J. High Energy Phys. 2013, 1304, 020. [Google Scholar] [CrossRef]
- Cotaescu, I.I. Covariant representations of the de Sitter isometry group. Mod. Phys. Lett. A 2013, 28, 1350033. [Google Scholar] [CrossRef]
- Ferrara, S.; Marrani, A.; Zumino, B. Jordan pairs, E6 and U-duality in five dimensions. J. Phys. A 2013, 46, 065402. [Google Scholar] [CrossRef]
- Kleinschmidt, A.; Nicolai, H. On higher spin realizations of K(E10). J. High Energy Phys. 2013, 1308, 41. [Google Scholar] [CrossRef]
- Kubo, T. On the homomorphisms between the generalized Verma modules arising from conformally invariant system. J. Lie Theory 2013, 23, 847–883. [Google Scholar]
- Neumann, C.; Rehren, K.-H.; Wallenhorst, L. New methods in conformal partial wave analysis. In Springer Proceedings in Mathematics and Statistics; Springer: Tokyo, Japan; Berlin/Heidelberg, Germany, 2013; Volume 36, pp. 109–125. [Google Scholar]
- Todorov, I.T. Studying Quantum Field Theory. Bulg. J. Phys. 2013, 40, 93–114. [Google Scholar]
- Belitsky, A.V.; Hohenegger, S.; Korchemsky, G.P.; Sokatchev, E.; Zhiboedov, A. From correlation functions to event shapes. Nucl. Phys. B 2014, 884, 305–343. [Google Scholar] [CrossRef]
- Costa, M.S.; Goncalves, V.; Penedones, J. Spinning AdS propagators. J. High Energy Phys. 2014, 1409, 64. [Google Scholar] [CrossRef]
- Dobrev, V.K. Invariant differential operators for non-compact Lie groups: The reduced SU(3,3) multiplets. Phys. Part. Nucl. Lett. 2014, 11, 864–871. [Google Scholar] [CrossRef]
- Dobrev, V.K. Multiplet classification for SU(n,n). J. Phys. Conf. Ser. 2014, 563, 012008. [Google Scholar] [CrossRef]
- Dobrev, V.K. Invariant differential operators for non-compact Lie groups: The SO*(12) case. J. Phys. Conf. Ser. 2015, 597, 012032. [Google Scholar] [CrossRef]
- Godazgar, H.; Godazgar, M.; Hohm, O.; Nicolai, H.; Samtleben, H. Supersymmetric E7(7) exceptional field theory. J. High Energy Phys. 2014, 1409, 44. [Google Scholar] [CrossRef]
- Marrani, A.; Truini, P. Exceptional Lie algebras, SU(3) and Jordan pairs Part 2: Zorn-type representations. J. Phys. A 2014, 47, 265202. [Google Scholar] [CrossRef]
- Matumoto, H. On the homomorphisms between scalar generalized Verma modules. Compos. Math. 2014, 150, 877–892. [Google Scholar] [CrossRef]
- Metsaev, R.R. BRST invariant effective action of shadow fields, conformal fields, and AdS/CFT. Theor. Math. Phys. 2014, 181, 1548–1565. [Google Scholar] [CrossRef]
- Metsaev, R.R. Arbitrary spin conformal fields in (A)dS. Nucl. Phys. B 2014, 885, 734–771. [Google Scholar] [CrossRef]
- Metsaev, R.R. Mixed-symmetry fields in AdS(5), conformal fields, and AdS/CFT. J. High Energy Phys. 2015, 1501, 077. [Google Scholar] [CrossRef]
- Metsaev, R.R. Light-cone AdS/CFT-adapted approach to AdS fields/currents, shadows, and conformal fields. J. High Energy Phys. 2015, 1510, 110. [Google Scholar] [CrossRef]
- Nikolov, M.N.; Stora, R.; Todorov, I.T. Renormalization of massless Feynman amplitudes in configuration space. Rev. Math. Phys. 2014, 26, 1430002. [Google Scholar] [CrossRef]
- Anand, N.; Cantrell, S. The Goldstone equivalence theorem and AdS/CFT. J. High Energy Phys. 2015, 1508, 50. [Google Scholar] [CrossRef]
- Barnich, G.; Bekaert, X.; Grigoriev, M. Notes on conformal invariance of gauge fields. J. Phys. A 2015, 48, 505402. [Google Scholar] [CrossRef]
- Bekaert, X.; Erdmenger, J.; Ponomarev, D.; Sleight, C. Towards holographic higher-spin interactions: Four-point functions and higher-spin exchange. J. High Energy Phys. 2015, 1511, 149. [Google Scholar] [CrossRef]
- Costa, M.S.; Hansen, T. Conformal correlators of mixed-symmetry tensors. J. High Energy Phys. 2015, 1502, 151. [Google Scholar] [CrossRef]
- Dobrev, V.K. Classification of conformal representations induced from the maximal cuspidal parabolic. Phys. At. Nucl. 2017, 80, 347–352. [Google Scholar] [CrossRef]
- Elkhidir, E.; Karateev, D.; Serone, M. General Three-Point Functions in 4D CFT. J. High Energy Phys. 2015, 1501, 133. [Google Scholar] [CrossRef]
- Kleinschmidt, A.; Nicolai, H. Standard model fermions and K(E10). Phys. Lett. B 2015, 747, 251–254. [Google Scholar] [CrossRef]
- Vos, G. Generalized additivity in unitary conformal field theories. Nucl. Phys. B 2015, 899, 91–111. [Google Scholar] [CrossRef]
- Xiao, W. Differential equations and singular vectors in Verma modules over sl(n,C). Acta Math. Sin. Engl. Ser. 2015, 31, 1057–1066. [Google Scholar] [CrossRef]
- Zhang, G. Discrete components in restriction of unitary representations of rank one semisimple Lie groups. J. Funct. Anal. 2015, 269, 3689–3713. [Google Scholar] [CrossRef]
- Hijano, E.; Kraus, P.; Perlmutter, E.; Snively, R. Witten Diagrams Revisited: The AdS Geometry of Conformal Blocks. J. High Energy Phys. 2016, 1601, 146. [Google Scholar] [CrossRef]
- Dobrev, V.K. Invariant Differential Operators, Volume 2: Quantum Groups; De Gruyter Studies in Mathematical Physics; De Gruyter: Berlin, Germany; Boston, MA, USA, 2017; Volume 39, pp. 394 + xii. ISBN 978-3-11-043543-6/978-3-11-042770-7. [Google Scholar]
- Dobrev, V.K. Invariant Differential Operators, Volume 3: Supersymmetry; De Gruyter Studies in Mathematical Physics; De Gruyter: Berlin, Germany; Boston, MA, USA, 2018; Volume 49, pp. 218 + viii. ISBN 978-3-11-052-7490/978-3-11-052-6639. ISSN 2194-3532. [Google Scholar]
- Dobrev, V.K. Invariant Differential Operators, Volume 4: AdS/CFT, (Super-)Virasoro and Affine (Super-)Algebras; De Gruyter Studies in Mathematical Physics; De Gruyter, Berlin, Boston, 2019; Volume 53, pp. 234 + x, ISBN: 3110609681/978-3110609684.
- Knapp, A.W. Representation Theory of Semisimple Groups (An Overview Based on Examples); Princeton University Press: Princeton, NJ, USA, 1986. [Google Scholar]
- Dobrev, V.K. Multiplet classification of the reducible elementary representations of real semisimple Lie groups: The SOe(p,q) example. Lett. Math. Phys. 1985, 9, 205–211. [Google Scholar] [CrossRef]
- Dobrev, V.K.; Petkova, V.B. On the group-theoretical approach to extended conformal supersymmetry: Classification of multiplets. Lett. Math. Phys. 1985, 9, 287–298. [Google Scholar] [CrossRef]
- Dixmier, J. Enveloping Algebras; North Holland: New York, NY, USA, 1977. [Google Scholar]
- Dobrev, V.K. Canonical construction of differential operators intertwining representations of real semisimple Lie groups. Rept. Math. Phys. 1988, 25, 159–181. [Google Scholar]
- Dobrev, V.K. Subsingular vectors and conditionally invariant (q-deformed) equations. J. Phys. A 1995, 28, 7135–7155. [Google Scholar] [CrossRef]
- Dobrev, V.K. Kazhdan-Lusztig polynomials, subsingular vectors, and conditionally invariant (q-deformed) equations. In Proceedings of the Symmetries in Science IX, Bregenz, Austria, 6–10 August 1996; Gruber, B., Ramek, M., Eds.; Plenum Press: New York, NY, USA, 1997; pp. 47–80. [Google Scholar]
- Dobrev, V.K. Invariant Differential Operators for Non-Compact Lie Algebras Parabolically Related to Conformal Lie Algebras. J. High Energy Phys. 2013, 2, 15. [Google Scholar] [CrossRef]
- Fioresi, R.; Varadarajan, V.S. Harish-Chandra Highest Weight Representations of Semisimple Lie Algebras and Lie Groups. J. Lie Theory 2023, 33, 217–252. [Google Scholar]
- Fioresi, R.; Zanchetta, F. Deep Learning and Geometric Deep Learning: An introduction for mathematicians and physicists. Int. J. Geom. Methods Mod. Phys. 2023, 20, 2330006. [Google Scholar] [CrossRef]
- Juhl, A. Extrinsic Paneitz operators and Q-curvatures for hypersurfaces. Differ. Geom. Appl. 2023, 89, 102027. [Google Scholar] [CrossRef]
- Disch, J. Generic Gelfand-Tsetlin modules of quantized and classical orthogonal algebras. J. Algebra 2023, 620, 157–193. [Google Scholar] [CrossRef]
- Acosta-Humánez, P.; Barkatou, M.; Sánchez-Cauce, R.; Weil, J.A. Darboux Transformations for Orthogonal Differential Systems and Differential Galois Theory. SIGMA 2023, 19, 016. [Google Scholar] [CrossRef]
- Raza, N.; Salman, F.; Butt, A.R.; Gandarias, M.L. Lie symmetry analysis, soliton solutions and qualitative analysis concerning to the generalized q-deformed Sinh-Gordon equation. Commun. Nonlinear Sci. Numer. Simul. 2023, 116, 106824. [Google Scholar] [CrossRef]
- Isaev, A.P.; Krivonos, S.O.; Provorov, A.A. Split Casimir operator for simple Lie algebras in the cube of ad-representation and Vogel parameters. Int. J. Mod. Phys. A 2023, 38, 2350037. [Google Scholar] [CrossRef]
- Isaev, R.A.P.; Provorov, A.A. Split Casimir operator and solutions of the Yang–Baxter equation for the osp(M|N) and sℓ(M|N) Lie superalgebras, higher Casimir operators, and the Vogel parameters. Teor. Mat. Fiz. 2022, 210, 259–301. [Google Scholar] [CrossRef]
- Isaev, A.P.; Provorov, A.A. Projectors on invariant subspaces of representations ad⊗2 of Lie algebras so(N) and sp(2r) and Vogel parameterization. Teor. Mat. Fiz. 2021, 206, 3–22. [Google Scholar] [CrossRef]
- Sasso, E.; Umanità, V. On the relationships between covariance and the decoherence-free subalgebra of a quantum Markov semigroup. Inf. Dim. Anal. Quant. Probab. Rel. Top. 2023, 26, 2250022. [Google Scholar] [CrossRef]
- Aschieri, P.; Fioresi, R.; Latini, E.; Weber, T. Quantum principal bundles and noncommutative differential calculus. Proc. Sci. 2022, 406, 280. [Google Scholar]
- Chuah, M.; Fioresi, R. Levi Factors and Admissible Automorphisms. Algebr. Represent. Theory 2022, 25, 341–358. [Google Scholar] [CrossRef]
- Xie, W.; Li, W. Entanglement properties of random invariant quantum states. Quant. Inf. Comput. 2022, 22, 901–923. [Google Scholar] [CrossRef]
- Eremko, A.; Brizhik, L.; Loktev, V. Algebra of the spinor invariants and the relativistic hydrogen atom. Ann. Phys. 2023, 451, 169266. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, H.; Li, X.; Li, C. Lie Symmetry Analysis and Conservation Laws for the (2 + 1)-Dimensional Dispersionless B-Type Kadomtsev–Petviashvili Equation. J. Nonlin. Math. Phys. 2023, 30, 92–113. [Google Scholar] [CrossRef]
- Artawan, I.N.; Purwanto, A.; Yuwana, L. Invariants for determining entanglements pattern. Phys. Scr. 2022, 97, 075106. [Google Scholar] [CrossRef]
- Hu, S.; Yeats, K. Completing the c2 completion conjecture for p=2. Commun. Num. Theor. Phys. 2023, 17, 343–384. [Google Scholar] [CrossRef]
- Bautista, A.; Ibort, A.; Lafuente, J. The sky invariant: A new conformal invariant for Schwarzschild spacetime. Int. J. Geom. Meth. Mod. Phys. 2022, 19, 2250168. [Google Scholar] [CrossRef]
- Khantoul, B.; Bounames, A. Exact solutions for time-dependent complex symmetric potential well. Acta Polytech. 2023, 63, 132–139. [Google Scholar] [CrossRef]
- Weng, Z.H. Two incompatible types of invariants in the octonion spaces. Int. J. Geom. Meth. Mod. Phys. 2022, 19, 2250161. [Google Scholar] [CrossRef]
- Jalalzadeh, S.; Rasouli, S.M.M.; Moniz, P. Shape Invariant Potentials in Supersymmetric Quantum Cosmology. Universe 2022, 8, 316. [Google Scholar] [CrossRef]
- Val’kov, V.V.; Shustin, M.S.; Aksenov, S.V.; Zlotnikov, A.O.; Fedoseev, A.D.; Mitskan, V.A.; Kagan, M.Y. Topological superconductivity and Majorana states in low-dimensional systems. Phys. Usp. 2022, 65, 2–39. [Google Scholar] [CrossRef]
- Jafari, M.; Zaeim, A.; Tanhaeivash, A. Symmetry group analysis and conservation laws of the potential modified KdV equation using the scaling method. Int. J. Geom. Meth. Mod. Phys. 2022, 19, 2250098. [Google Scholar] [CrossRef]
- Marquette, I.; Zelaya, K. On the general family of third-order shape-invariant Hamiltonians related to generalized Hermite polynomials. Phys. D Nonlinear Phenom. 2022, 442, 133529. [Google Scholar] [CrossRef]
- Wang, Y.K.; Ge, L.Z.; Fei, S.M.; Wang, Z.X. A Note on Holevo Quantity of SU(2)-invariant States. Int. J. Theor. Phys. 2022, 61, 7. [Google Scholar] [CrossRef]
- Lavrov, P.M. On gauge-invariant deformation of reducible gauge theories. Eur. Phys. J. C 2022, 82, 429. [Google Scholar] [CrossRef]
- Adeyemo, O.D.; Khalique, C.M. Lie Group Classification of Generalized Variable Coefficient Korteweg-de Vries Equation with Dual Power-Law Nonlinearities with Linear Damping and Dispersion in Quantum Field Theory. Symmetry 2022, 14, 83. [Google Scholar] [CrossRef]
- Liu, W.; Fang, X.; Jing, J.; Wang, A. Gauge invariant perturbations of general spherically symmetric spacetimes. Sci. China Phys. Mech. Astron. 2023, 66, 210411. [Google Scholar] [CrossRef]
- Latorre, A.; Ugarte, L. Abelian J-Invariant Ideals on Nilpotent Lie Algebras. In Proceedings of the International Workshop on Lie Theory and Its Applications in Physics, Sofia, Bulgaria, 20–26 June 2021; Springer Proceedings in Mathematics & Statistics. Springer: Singapore, 2022; Volume 396, pp. 509–514. [Google Scholar]
- Vaneeva, O.; Magda, O.; Zhalij, A. Lie Reductions and Exact Solutions of Generalized Kawahara Equations. In Proceedings of the International Workshop on Lie Theory and Its Applications in Physics, Sofia, Bulgaria, 20–26 June 2021; Springer Proceedings in Mathematics & Statistics. Springer: Singapore, 2022; Volume 396, pp. 333–338. [Google Scholar]
- Blitz, S. A sharp characterization of the Willmore invariant. Int. J. Math. 2023, 34, 2350054. [Google Scholar] [CrossRef]
- Singh, S.; Nechita, I. Diagonal unitary and orthogonal symmetries in quantum theory: II. Evolution operators. J. Phys. A 2022, 55, 255302. [Google Scholar] [CrossRef]
- Aizawa, N.; Dobrev, V.K. Invariant differential operators for the Jacobi algebra G2. Mod. Phys. Lett. A 2022, 37, 2250067. [Google Scholar] [CrossRef]
- Schaposnik, L.P.; Schulz, S. Triality for Homogeneous Polynomials. SIGMA 2021, 17, 79. [Google Scholar] [CrossRef]
- Bonora, L.; Malik, R.P. BRST and Superfield Formalism—A Review. Universe 2021, 7, 280. [Google Scholar] [CrossRef]
- Watson, C.K.; Julius, W.; Gorban, M.; McNutt, D.D.; Davis, E.W.; Cleaver, G.B. An Invariant Characterization of the Levi-Civita Spacetimes. Symmetry 2021, 13, 1469. [Google Scholar] [CrossRef]
- Sen, I. Analysis of the superdeterministic Invariant-set theory in a hidden-variable setting. Proc. Roy. Soc. Lond. A 2022, 478, 20210667. [Google Scholar] [CrossRef]
- Geloun, J.B.; Ramgoolam, S. All-orders asymptotics of tensor model observables from symmetries of restricted partitions. J. Phys. A 2022, 55, 435203. [Google Scholar] [CrossRef]
- Anjali, S.; Gupta, S. Symplectic gauge-invariant reformulation of a free-particle system on toric geometry. EPL 2021, 135, 11002. [Google Scholar]
- Johansson, M. Low degree Lorentz invariant polynomials as potential entanglement invariants for multiple Dirac spinors. Ann. Phys. 2023, 457, 169410. [Google Scholar] [CrossRef]
- Haddadin, W.I.J. Invariant polynomials and machine learning. arXiv 2021, arXiv:2104.12733. [Google Scholar]
- Barnes, G.; Padellaro, A.; Ramgoolam, S. Permutation invariant Gaussian two-matrix models. J. Phys. A 2022, 55, 145202. [Google Scholar] [CrossRef]
- Schnetz, O. Geometries in perturbative quantum field theory. Commun. Num. Theor. Phys. 2021, 15, 743–791. [Google Scholar] [CrossRef]
- Ichikawa, T. Chern-Simons invariant and Deligne-Riemann-Roch isomorphism. Trans. Am. Math. Soc. 2021, 374, 2987–3005. [Google Scholar] [CrossRef]
- Varshovi, A.A. ★-cohomology, third type Chern character and anomalies in general translation-invariant noncommutative Yang–Mills. Int. J. Geom. Meth. Mod. Phys. 2021, 18, 2150089. [Google Scholar] [CrossRef]
- Chae, J. A Cable Knot and BPS-Series. SIGMA 2023, 19, 002. [Google Scholar] [CrossRef]
- Brandt, F. Properties of an alternative off-shell formulation of 4D supergravity. Symmetry 2021, 13, 620. [Google Scholar] [CrossRef]
- Abramovich, D.; Chen, Q.; Gross, M.; Siebert, B. Decomposition of degenerate Gromov–Witten invariants. Compos. Math. 2020, 156, 2020–2075. [Google Scholar] [CrossRef]
- Mattingly, B.; Kar, A.; Gorban, M.; Julius, W.; Watson, C.K.; Ali, M.; Baas, A.; Elmore, C.; Lee, J.S.; Shakerin, B.; et al. Curvature Invariants for the Alcubierre and Natário Warp Drives. Universe 2021, 7, 21. [Google Scholar] [CrossRef]
- Mashford, J. A Spectral Calculus for Lorentz Invariant Measures on Minkowski Space. Symmetry 2020, 12, 1696. [Google Scholar] [CrossRef]
- Kac, V.G.; Frajria, P.M.; Papi, P. Invariant Hermitian forms on vertex algebras. Commun. Contemp. Math. 2022, 24, 2150059. [Google Scholar] [CrossRef]
- Thibes, R. BRST analysis and BFV quantization of the generalized quantum rigid rotor. Mod. Phys. Lett. A 2021, 36, 2150116. [Google Scholar] [CrossRef]
- Wang, H. Weyl invariant Jacobi forms: A new approach. Adv. Math. 2021, 384, 107752. [Google Scholar] [CrossRef]
- Špenko, Š.; Bergh, M.V. Perverse schobers and GKZ systems. Adv. Math. 2022, 402, 108307. [Google Scholar] [CrossRef]
- Yamani, H.A.; Mouayn, Z. Properties of Shape-Invariant Tridiagonal Hamiltonians. Theor. Math. Phys. 2020, 203, 380–400, 761ߝ779. [Google Scholar] [CrossRef]
- Bahmandoust, P.; Latifi, D. Naturally reductive homogeneous (α,β) spaces. Int. J. Geom. Meth. Mod. Phys. 2020, 17, 2050117. [Google Scholar] [CrossRef]
- Geer, N.; Ha, N.P.; Patureau-Mirand, B. Modified graded Hennings invariants from unrolled quantum groups and modified integral. J. Pure Appl. Algebra 2022, 226, 106815. [Google Scholar] [CrossRef]
- Berceanu, S. Invariant metric on the extended Siegel–Jacobi upper half space. J. Geom. Phys. 2021, 162, 104049. [Google Scholar] [CrossRef]
- Pappas, G. Volume and symplectic structure for ℓ-adic local systems. Adv. Math. 2021, 387, 107836. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.R.; Guo, C.X.; Kou, S.P. Defective edge states and anomalous bulk-boundary correspondence for topological insulators under non-Hermitian similarity transformation. Int. J. Mod. Phys. B 2020, 34, 2050146. [Google Scholar] [CrossRef]
- Ai, C.; Dong, C.; Lin, X. Some exceptional extensions of Virasoro vertex operator algebras. J. Algebra 2020, 546, 370–389. [Google Scholar] [CrossRef]
- Kumar, S.; Chauhan, B.; Tripathi, A.; Malik, R.P. Massive 4D Abelian 2-form theory: Nilpotent symmetries from the (anti-)chiral superfield approach. Int. J. Mod. Phys. A 2022, 37, 2250003. [Google Scholar] [CrossRef]
- Zenad, M.; Ighezou, F.Z.; Cherbal, O.; Maamache, M. Ladder Invariants and Coherent States for Time-Dependent Non-Hermitian Hamiltonians. Int. J. Theor. Phys. 2020, 59, 1214–1226. [Google Scholar] [CrossRef]
- Ha, N.P. Anomaly-free TQFTs from the super Lie algebra sl(2|1). J. Knot Theor. Ramifications 2022, 31, 2250029. [Google Scholar] [CrossRef]
- Allegretti, D.G.L. Stability conditions, cluster varieties, and Riemann-Hilbert problems from surfaces. Adv. Math. 2021, 380, 107610. [Google Scholar] [CrossRef]
- Baseilhac, S.; Roche, P. Unrestricted Quantum Moduli Algebras. I. The Case of Punctured Spheres. SIGMA 2022, 18, 25. [Google Scholar] [CrossRef]
- Fioresi, R.; Latini, E.; Marrani, A. The q-linked complex Minkowski space, its real forms and deformed isometry groups. Int. J. Geom. Methods Mod. Phys. 2019, 16, 1950009. [Google Scholar] [CrossRef]
- Liu, J.G.; Yang, X.J.; Feng, Y.Y. Characteristic of the algebraic traveling wave solutions for two extended (2 + 1)-dimensional Kadomtsev–Petviashvili equations. Mod. Phys. Lett. A 2019, 35, 2050028. [Google Scholar] [CrossRef]
- Biswas, I.; Rayan, S. Homogeneous Higgs and co-Higgs bundles on Hermitian symmetric spaces. Int. J. Math. 2020, 31, 2050118. [Google Scholar] [CrossRef]
- Haouam, I. Analytical Solution of (2+1) Dimensional Dirac Equation in Time-Dependent Noncommutative Phase-Space. Acta Polytech. 2020, 60, 111–121. [Google Scholar] [CrossRef]
- Adler, D.; Gritsenko, V. The D8-tower of weak Jacobi forms and applications. J. Geom. Phys. 2020, 150, 103616. [Google Scholar] [CrossRef]
- Nigsch, E.A.; Vickers, J.A. A nonlinear theory of distributional geometry. Proc. Roy. Soc. Lond. A 2020, 476, 20200642. [Google Scholar] [CrossRef] [PubMed]
- Abe, S. Weak invariants in dissipative systems: Action principle and Noether charge for kinetictheory. Phil. Trans. Roy. Soc. Lond. A 2020, 378, 20190196. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X.P. Mei Symmetry and Invariants of Quasi-Fractional Dynamical Systems with Non-Standard Lagrangians. Symmetry 2019, 11, 1061. [Google Scholar] [CrossRef]
- Gueorguiev, V.G.; Maeder, A. Geometric Justification of the Fundamental Interaction Fields for the Classical Long-Range Forces. Symmetry 2021, 13, 379. [Google Scholar] [CrossRef]
- Bambozzi, F.; Murro, S. On the uniqueness of invariant states. Adv. Math. 2021, 376, 107445. [Google Scholar] [CrossRef]
- González-Prieto, Á. Virtual classes of parabolic SL2(C) -character varieties. Adv. Math. 2020, 368, 107148. [Google Scholar] [CrossRef]
- Krishnaswami, G.S.; Vishnu, T.R. Invariant tori, action-angle variables and phase space structure of the Rajeev-Ranken model. J. Math. Phys. 2019, 60, 082902. [Google Scholar] [CrossRef]
- Dabholkar, A.; Jain, D.; Rudra, A. APS η-invariant, path integrals, and mock modularity. J. High Energy Phys. 2019, 11, 80. [Google Scholar] [CrossRef]
- Lin, D. Seiberg-Witten equation on a manifold with rank-2 foliation. Proc. Am. Math. Soc. 2021, 149, 4411–4417. [Google Scholar] [CrossRef]
- Nozawa, M.; Tomoda, K. Counting the number of Killing vectors in a 3D spacetime. Class. Quant. Gravity 2019, 36, 155005. [Google Scholar] [CrossRef]
- Chen, H. Cohomological invariants of representations of 3-manifold groups. J. Knot Theor. Ramifications 2020, 29, 2043003. [Google Scholar] [CrossRef]
- Xiao, Z.; Yang, Y.; Zhang, Y. The diagram category of framed tangles and invariants of quantized symplectic group. Sci. China Math. 2019, 63, 689–700. [Google Scholar] [CrossRef]
- Zubkov, M.A.; Wu, X. Topological invariant in terms of the Green functions for the Quantum Hall Effect in the presence of varying magnetic field. Ann. Phys. 2020, 418, 168179, Erratum in Ann. Phys. 2021, 430, 168510. [Google Scholar] [CrossRef]
- Garoufalidis, S.; Zagier, D. Asymptotics of Nahm sums at roots of unity. Ramanujan J. 2021, 55, 219–238. [Google Scholar] [CrossRef]
- Slavnov, A.A. Renormalizability and Unitarity of the Englert–Broute–Higgs–Kibble Model. Theor. Math. Phys. 2018, 197, 1611–1614. [Google Scholar] [CrossRef]
- Halder, A.K.; Paliathanasis, A.; Leach, P.G.L. Noether’s Theorem and Symmetry. Symmetry 2018, 10, 744. [Google Scholar] [CrossRef]
- Yeats, K. A Special Case of Completion Invariance for the c2 Invariant of a Graph. Can. J. Math. 2018, 70, 1416–1435. [Google Scholar] [CrossRef]
- Suzuki, S. The universal quantum invariant and colored ideal triangulations. Algebr. Geom. Topol. 2018, 18, 3363–3402. [Google Scholar] [CrossRef]
- Habibullin, I.T.; Khakimova, A.R. A Direct Algorithm for Constructing Recursion Operators and Lax Pairs for Integrable Models. Theor. Math. Phys. 2018, 196, 1200–1216. [Google Scholar] [CrossRef]
- Wheeler, J.T. General relativity as a biconformal gauge theory. Nucl. Phys. B 2019, 943, 114624. [Google Scholar] [CrossRef]
- Helleland, C.; Hervik, S. Real GIT with applications to compatible representations and Wick-rotations. J. Geom. Phys. 2019, 142, 92–110. [Google Scholar] [CrossRef]
- Talamini, V. Canonical bases of invariant polynomials for the irreducible reflection groups of types E6, E7, and E8. J. Algebra 2018, 503, 590–603. [Google Scholar] [CrossRef]
- Benkart, G.; Elduque, A. Cross products, invariants, and centralizers. J. Algebra 2018, 500, 69–102. [Google Scholar] [CrossRef]
- Wang, H. Weyl invariant E8 Jacobi forms. Commun. Num. Theor. Phys. 2021, 15, 517–573. [Google Scholar] [CrossRef]
- Bunk, S.; Szabo, R.J. Topological insulators and the Kane–Mele invariant: Obstruction and localization theory. Rev. Math. Phys. 2019, 32, 2050017. [Google Scholar] [CrossRef]
- Kauffman, L.H.; Lambropoulou, S. Skein Invariants of Links and Their State Sum Models. Symmetry 2017, 9, 226. [Google Scholar] [CrossRef]
- Fernández-Culma, E.A.; Godoy, Y. Anti-Kählerian Geometry on Lie Groups. Math. Phys. Anal. Geom. 2018, 21, 8. [Google Scholar] [CrossRef]
- Wakamatsu, M.; Kitadono, Y.; Zhang, P.M. The issue of gauge choice in the Landau problem and the physics of canonical and mechanical orbital angular momenta. Ann. Phys. 2018, 392, 287–322. [Google Scholar] [CrossRef]
- Khalfoun, H. aff(1|1)-Relative cohomology on R1|1. Int. J. Geom. Meth. Mod. Phys. 2017, 14, 1750174. [Google Scholar] [CrossRef]
- Takeuchi, Y. Ambient constructions for Sasakian η-Einstein manifolds. Adv. Math. 2018, 328, 82–111. [Google Scholar] [CrossRef]
- Levchenko, E.A.; Trifonov, A.Y.; Shapovalov, A.V. Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity. Russ. Phys. J. 2017, 60, 284–291. [Google Scholar] [CrossRef]
- Chen, J.; Han, M.; Li, Y.; Zeng, B.; Zhou, J. Local density matrices of many-body states in the constant weight subspaces. Rep. Math. Phys. 2019, 83, 273–292. [Google Scholar] [CrossRef]
- Belgun, F.; Cortés, V.; Haupt, A.S.; Lindemann, D. Left-invariant Einstein metrics on S3×S3. J. Geom. Phys. 2018, 128, 128–139. [Google Scholar] [CrossRef]
- Kuessner, T. Fundamental classes of 3-manifold groups representations in SL(4,R). J. Knot Theor. Ramifications 2017, 26, 1750036. [Google Scholar] [CrossRef]
- Weng, Z.H. Spin Angular Momentum of Proton Spin Puzzle in Complex Octonion Spaces. Int. J. Geom. Meth. Mod. Phys. 2017, 14, 1750102. [Google Scholar] [CrossRef]
- Jamal, S.; Paliathanasis, A. Group invariant transformations for the Klein–Gordon equation in three dimensional flat spaces. J. Geom. Phys. 2017, 117, 50–59. [Google Scholar] [CrossRef]
- Bruhat, F. Sur les représentations induites des groupes de Lie. Bull. Soc. Math. France 1956, 84, 97–205. [Google Scholar] [CrossRef]
- Chandra, H. 2.! semi-simple groups IV, V, VI Amer. Am. J. Math. 1955, 77, 743–777. [Google Scholar]
- Dobrev, V.K. Positive energy representations, holomorphic discrete series and finite-dimensional irreps. J. Phys. A 2008, 41, 425206. [Google Scholar] [CrossRef]
- Knapp, A.W.; Stein, E.M. Interwining operators for semisimple groups. Ann. Math. 1971, 93, 489–578. [Google Scholar] [CrossRef]
- Harish-Chandra, Representations of Semisimple Lie Groups VI: Integrable and Square-Integrable Representations. Am. J. Math. 1956, 78, 1–41.
- Gelfand, I.M.; Naimark, M.A. Unitary Representations of the Lorentz Group. Acad. Sci. USSR J. Phys. 1946, 10, 93–94. [Google Scholar]
- Bargmann, V. Irreducible unitary representations of the Lorentz group. Ann. Math. 1947, 48, 568–640. [Google Scholar] [CrossRef]
- Dobrev, V.K. Invariant differential operators for non-compact Lie groups: The main su(n, n) cases. Phys. At. Nucl. 2013, 76, 983–990. [Google Scholar] [CrossRef]
- Dobrev, V.K. Invariant Differential Operators for Non-Compact Lie Groups: The Sp(n,R) Case Lie Theory and Its Applications in Physics. In Proceedings of the 9th International Workshop, Varna, Bulgaria, 26 June 2011; Springer Proceedings in Mathematics and Statistics. Springer: Tokyo, Japan; Berlin/Heidelberg, Germany, 2013; Volume 36, pp. 311–335. [Google Scholar]
- Dobrev, V.K. Heisenberg parabolic subgroup of SO*(8) and invariant differential operators. In Proceedings of the Workshop on Quantum Geometry, Field Theory and Gravity, Corfu, Greece, 20–27 September 2021; Volume 406. Available online: https://pos.sissa.it/406/303 (accessed on 23 November 2022).
- Dobrev, V.K. Heisenberg Parabolic Subgroup of SO*(10) and Corresponding Invariant Differential Operators. Symmetry 2022, 14, 1592. [Google Scholar] [CrossRef]
- Satake, I. On Representations and Compactifications of Symmetric Riemannian Spaces. Ann. Math. 1960, 71, 77–110. [Google Scholar] [CrossRef]
- Dobrev, V.K. The exceptional Lie algebra E7(-25): Multiplets and invariant differential operators. J. Phys. A 2009, 42, 285203. [Google Scholar] [CrossRef]
- Dobrev, V.K. Invariant Differential Operators for Non-Compact Lie Groups: The E6(14) case. In Proceedings of the 5th Mathematical Physics Meeting: Summer School and Conference on Modern Mathematical Physics, Belgrade, Serbia, 6–17 July 2008; Dragovich, B., Rakic, Z., Eds.; Institute of Physics: Belgrade, Serbia, 2009; pp. 95–124. [Google Scholar]
n | ||||
, | ||||
, | , | |||
27 | ||||
below not CLA | ||||
13 | ||||
21 | ||||
20 | ||||
15 | ||||
0 min. | ||||
max. | ||||
6 min. | ||||
5 max. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobrev, V.K. Canonical Construction of Invariant Differential Operators: A Review. Symmetry 2024, 16, 151. https://doi.org/10.3390/sym16020151
Dobrev VK. Canonical Construction of Invariant Differential Operators: A Review. Symmetry. 2024; 16(2):151. https://doi.org/10.3390/sym16020151
Chicago/Turabian StyleDobrev, Vladimir K. 2024. "Canonical Construction of Invariant Differential Operators: A Review" Symmetry 16, no. 2: 151. https://doi.org/10.3390/sym16020151
APA StyleDobrev, V. K. (2024). Canonical Construction of Invariant Differential Operators: A Review. Symmetry, 16(2), 151. https://doi.org/10.3390/sym16020151