On the Analytic Extension of Lauricella–Saran’s Hypergeometric Function FK to Symmetric Domains
Abstract
:1. Introduction
2. Preliminary Definitions and Results
- (1)
- for ;
- (2)
- If for there exists a multiindex such that then for and .
- (1)
- The branched continued fraction
- (2)
- The values of the branched continued fraction and of its approximants are in the closed domain
3. Branched Continued Fractions and Analytic Continuation
4. Discussions and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lauricella, G. Sulle funzioni ipergeometriche a più variabili. Rend. Circ. Matem. 1893, 7, 111–158. [Google Scholar] [CrossRef]
- Saran, S. Hypergeometric functions of three variables. Ganita 1954, 5, 77–91. [Google Scholar]
- Mazars, M. Statistical physics of the freely jointed chain. Phys. Rev. E 1996, 53, 6297–6319. [Google Scholar] [CrossRef]
- Mazars, M. Canonical partition functions of freely jointed chains. J. Phys. A Math. Gen. 1998, 31, 1949–1964. [Google Scholar] [CrossRef]
- Bustamante, M.G.; Miraglia, J.E.; Colavecchia, F.D. Computation of a generalized Nordsieck integral. Comput. Phys. Commun. 2005, 171, 40–48. [Google Scholar] [CrossRef]
- Hutchinson, T.P. Compound gamma bivariate distributions. Metrika 1981, 28, 263–271. [Google Scholar] [CrossRef]
- Hutchinson, T.P. Four applications of a bivariate Pareto distribution. Biom. J. 1979, 21, 553–563. [Google Scholar] [CrossRef]
- Kol, B.; Shir, R. The propagator seagull: General evaluation of a two loop diagram. J. High Energy Phys. 2019, 2019, 83. [Google Scholar] [CrossRef]
- Luo, M.-J.; Raina, R.K. On certain results related to the hypergeometric function FK. J. Math. Anal. Appl. 2021, 504, 125439. [Google Scholar] [CrossRef]
- Luo, M.-J.; Xu, M.-H.; Raina, R.K. On certain integrals related to Saran’s hypergeometric function FK. Fractal Fract. 2022, 6, 155. [Google Scholar] [CrossRef]
- Chelo, F.; López, J.L. Asymptotic expansions of the Lauricella hypergeometric function FD. J. Comput. Appl. Math. 2003, 151, 235–256. [Google Scholar]
- Antonova, T.; Dmytryshyn, R.; Goran, V. On the analytic continuation of Lauricella-Saran hypergeometric function FK(a1, a2, b1, b2; a1, b2, c3; z). Mathematics 2023, 11, 4487. [Google Scholar] [CrossRef]
- Antonova, T.M.; Hoyenko, N.P. Approximation of Lauricella’s functions FD ratio by Nörlund’s branched continued fraction in the complex domain. Mat. Metody Fiz. Mekh. Polya 2004, 47, 7–15. (In Ukrainian) [Google Scholar]
- Bodnar, D.I.; Hoyenko, N.P. Approximation of the ratio of Lauricella functions by a branched continued fraction. Mat. Studii 2003, 20, 210–214. (In Ukrainian) [Google Scholar]
- Hoyenko, N.; Antonova, T.; Rakintsev, S. Approximation for ratios of Lauricella–Saran fuctions FS with real parameters by a branched continued fractions. Math. Bul. Shevchenko Sci. Soc. 2011, 8, 28–42. (In Ukrainian) [Google Scholar]
- Bodnarchuk, P.I.; Skorobohatko, V.Y. Branched Continued Fractions and Their Applications; Naukova Dumka: Kyiv, Ukraine, 1974. (In Ukrainian) [Google Scholar]
- Bodnar, D.I. Branched Continued Fractions; Naukova Dumka: Kyiv, Ukraine, 1986. (In Russian) [Google Scholar]
- Scorobohatko, V.Y. Theory of Branched Continued Fractions and Its Applications in Computational Mathematics; Nauka: Moscow, Russia, 1983. (In Russian) [Google Scholar]
- Dmytryshyn, R.I. Convergence of multidimensional A- and J-fractions with independent variables. Comput. Methods Funct. Theory 2022, 22, 229–242. [Google Scholar] [CrossRef]
- Wall, H.S. Analytic Theory of Continued Fractions; D. Van Nostrand Co.: New York, NY, USA, 1948. [Google Scholar]
- Bodnar, D.I.; Bilanyk, I.B. Parabolic convergence regions of branched continued fractions of the special form. Carpathian Math. Publ. 2021, 13, 619–630. [Google Scholar] [CrossRef]
- Bodnar, D.I.; Bilanyk, I.B. Two-dimensional generalization of the Thron-Jones theorem on the parabolic domains of convergence of continued fractions. Ukr. Math. J. 2023, 74, 1317–1333. [Google Scholar]
- Bodnar, D.I.; Bilanyk, I.B. Estimation of the rates of pointwise and uniform convergence of branched continued fractions with inequivalent variables. J. Math. Sci. 2022, 265, 423–437. [Google Scholar] [CrossRef]
- Bodnar, D.I.; Bilanyk, I.B. On the convergence of branched continued fractions of a special form in angular domains. J. Math. Sci. 2020, 246, 188–200. [Google Scholar] [CrossRef]
- Antonova, T.; Dmytryshyn, R.; Sharyn, S. Branched continued fraction representations of ratios of Horn’s confluent function H6. Constr. Math. Anal. 2023, 6, 22–37. [Google Scholar]
- Antonova, T.; Dmytryshyn, R.; Sharyn, S. Generalized hypergeometric function 3F2 ratios and branched continued fraction expansions. Axioms 2021, 10, 310. [Google Scholar] [CrossRef]
- Bilanyk, I.B. A truncation error bound for some branched continued fractions of the special form. Mat. Stud. 2019, 52, 115–123. [Google Scholar] [CrossRef]
- Bodnar, D.I.; Bodnar, O.S.; Bilanyk, I.B. A truncation error bound for branched continued fractions of the special form on subsets of angular domains. Carpathian Math. Publ. 2023, 15, 437–448. [Google Scholar] [CrossRef]
- Hoyenko, N.P.; Hladun, V.R.; Manzij, O.S. On the infinite remains of the Nörlund branched continued fraction for Appell hypergeometric functions. Carpathian Math. Publ. 2014, 6, 11–25. (In Ukrainian) [Google Scholar] [CrossRef]
- Manziy, O.; Hladun, V.; Ventyk, L. The algorithms of constructing the continued fractions for any rations of the hypergeometric Gaussian functions. Math. Model. Comput. 2017, 4, 48–58. [Google Scholar] [CrossRef]
- Antonova, T.; Dmytryshyn, R.; Lutsiv, I.-A.; Sharyn, S. On some branched continued fraction expansions for Horn’s hypergeometric function H4(a, b; c, d; z1, z2) ratios. Axioms 2023, 12, 299. [Google Scholar] [CrossRef]
- Dmytryshyn, R.I.; Sharyn, S.V. Approximation of functions of several variables by multidimensional S-fractions with independent variables. Carpathian Math. Publ. 2021, 13, 592–607. [Google Scholar] [CrossRef]
- Hladun, V.R.; Hoyenko, N.P.; Manzij, O.S.; Ventyk, L. On convergence of function F4(1, 2; 2, 2; z1, z2) expansion into a branched continued fraction. Math. Model. Comput. 2022, 9, 767–778. [Google Scholar] [CrossRef]
- Komatsu, T. Asymmetric circular graph with Hosoya index and negative continued fractions. Carpathian Math. Publ. 2021, 13, 608–618. [Google Scholar] [CrossRef]
- Petreolle, M.; Sokal, A.D. Lattice paths and branched continued fractions II. Multivariate Lah polynomials and Lah symmetric functions. Eur. J. Combin. 2021, 92, 103235. [Google Scholar] [CrossRef]
- Ong, S.H. Computation of bivariate gamma and inverted beta distribution functions. J. Stat. Comput. Simul. 1995, 51, 153–163. [Google Scholar] [CrossRef]
- Milovanovic, G.; Rassias, M. (Eds.) Analytic Number Theory, Approximation Theory, and Special Functions; Springer: New York, NY, USA, 2014. [Google Scholar]
- Exton, H. Multiple Hypergeometric Functions and Applications; Horwood, E., Ed.; Halsted Press: Chichester, UK, 1976. [Google Scholar]
- Seaborn, J.B. Hypergeometric Functions and Their Applications; Springer: New York, NY, USA, 1991. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Horwood, E., Ed.; Halsted Press: Chichester, UK, 1985. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dmytryshyn, R.; Goran, V. On the Analytic Extension of Lauricella–Saran’s Hypergeometric Function FK to Symmetric Domains. Symmetry 2024, 16, 220. https://doi.org/10.3390/sym16020220
Dmytryshyn R, Goran V. On the Analytic Extension of Lauricella–Saran’s Hypergeometric Function FK to Symmetric Domains. Symmetry. 2024; 16(2):220. https://doi.org/10.3390/sym16020220
Chicago/Turabian StyleDmytryshyn, Roman, and Vitaliy Goran. 2024. "On the Analytic Extension of Lauricella–Saran’s Hypergeometric Function FK to Symmetric Domains" Symmetry 16, no. 2: 220. https://doi.org/10.3390/sym16020220
APA StyleDmytryshyn, R., & Goran, V. (2024). On the Analytic Extension of Lauricella–Saran’s Hypergeometric Function FK to Symmetric Domains. Symmetry, 16(2), 220. https://doi.org/10.3390/sym16020220