Symmetry Breaking in the U-Net: Hybrid Deep-Learning Multi-Class Segmentation of HeLa Cells in Reflected Light Microscopy Images
Abstract
:1. Introduction
1.1. Cell Culture Segmentation with Traditional Machine Learning Methods
1.2. Cell Culture Segmentation with Deep Learning Methods
1.3. Our Motivation for a New Image Segmentation Method
2. Materials and Methods
2.1. Cell Preparation and Microscope Specification
2.2. Data Preparation and Pre-Processing
2.3. The Neural Network Model Architectures
2.3.1. U-Net
2.3.2. The VGG19-U-Net
2.3.3. The Inception-U-Net
2.3.4. The ResNet34-U-Net
2.4. Training Models
2.5. Evaluation Metrics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, J.R.; Mat Isa, N.A.; Ch’ng, E.S. A Fuzzy-c-Means-Clustering Approach: Quantifying Chromatin Pattern of Non-neoplastic Cervical Squamous Cells. PLoS ONE 2015, 10, e0142830. [Google Scholar] [CrossRef]
- Rojas-Moraleda, R.; Xiong, W.; Halama, N.; Breitkopf-Heinlein, K.; Dooley, S.; Salinas, L.; Heermann, D.W.; Valous, N.A. Robust Detection and Segmentation of Cell Nuclei in Biomedical Images Based on a Computational Topology Framework. Med. Image Anal. 2017, 38, 90–103. [Google Scholar] [CrossRef]
- Wang, Z. A Semi-Automatic Method for Robust and Efficient Identification of Neighboring Muscle Cells. Pattern Recogn. 2016, 53, 300–312. [Google Scholar] [CrossRef]
- Buggenthin, F.; Marr, C.; Schwarzfischer, M.; Hoppe, P.S.; Hilsenbeck, O.; Schroeder, T.; Theis, F.J. An Automatic Method for Robust and Fast Cell Detection in Bright Field Images from High-Throughput Microscopy. BMC Bioinform. 2013, 14, 297. [Google Scholar] [CrossRef]
- Russell, S.J. Artificial Intelligence: A Modern Approach, 3rd ed.; Prentice Hall: Hoboken, NJ, USA, 2010. [Google Scholar]
- Huang, X.; Li, C.; Shen, M.; Shirahama, K.; Nyffeler, J.; Leist, M.; Grzegorzek, M.; Deussen, O. Stem Cell Microscopic Image Segmentation Using Supervised Normalized Cuts. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 4140–4144. [Google Scholar] [CrossRef]
- Mah, S.A.; Avci, R.; Du, P.; Vanderwinden, J.M.; Cheng, L.K. Supervised Machine Learning Segmentation and Quantification of Gastric Pacemaker Cells. In Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Montreal, QC, Canada, 20–24 July 2020; pp. 1408–1411. [Google Scholar] [CrossRef]
- Tikkanen, T.; Ruusuvuori, P.; Latonen, L.; Huttunen, H. Training Based Cell Detection from Bright-Field Microscope Images. In Proceedings of the 9th International Symposium on Image and Signal Processing and Analysis (ISPA), Zagreb, Croatia, 7–9 September 2015; pp. 160–164. [Google Scholar] [CrossRef]
- Liimatainen, K.; Ruusuvuori, P.; Latonen, L.; Huttunen, H. Supervised Method for Cell Counting from Bright Field Focus Stacks. In Proceedings of the 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic, 13–16 April 2016; pp. 391–394. [Google Scholar] [CrossRef]
- Hinton, G.; Sejnowski, T. Unsupervised Learning: Foundations of Neural Computation; MIT Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Antal, B.; Remenyik, B.; Hajdu, A. An Unsupervised Ensemble-Based Markov Random Field Approach to Microscope Cell Image Segmentation. In Proceedings of the 2013 International Conference on Signal Processing and Multimedia Applications (SIGMAP), Reykjavik, Iceland, 29–31 July 2013; pp. 94–99. [Google Scholar] [CrossRef]
- Mualla, F.; Schöll, S.; Sommerfeldt, B.; Maier, A.; Steidl, S.; Buchholz, R.; Hornegger, J. Unsupervised Unstained Cell Detection by SIFT Keypoint Clustering and Self-labeling Algorithm. In Medical Image Computing and Computer-Assisted Intervention (MICCAI 2014): Proceedings of the 17th International Conference, Boston, MA, USA, 14–18 September 2014; Lecture Notes in Computer Science; Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R., Eds.; Springer: Cham, Switzerland, 2014; Volume 8675, pp. 377–384. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, Y.; Wang, G.; Liu, J. Fast and Robust Segmentation of White Blood Cell Images by Self-supervised Learning. Micron 2018, 107, 55–71. [Google Scholar] [CrossRef]
- Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Neural Networks. In Computer Vision (ECCV 2014): 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8689, pp. 818–833. [Google Scholar] [CrossRef]
- Lin, S.; Norouzi, N. An Effective Deep Learning Framework for Cell Segmentation in Microscopy Images. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Online, 1–5 November 2021; pp. 3201–3204. [Google Scholar] [CrossRef]
- Kumar, N.; Verma, R.; Anand, D.; Sethi, A. Multi-Organ Nuclei Segmentation Challenge. Available online: https://monuseg.grandchallenge.org/ (accessed on 5 May 2021).
- Caicedo, J.C.; Goodman, A.; Karhohs, K.W.; Cimini, B.A.; Ackerman, J.; Haghighi, M.; Heng, C.; Becker, T.; Doan, M.; McQuin, C.; et al. Broad Bioimage Benchmark Collection. Available online: https://bbbc.broadinstitute.org/BBBC038 (accessed on 5 May 2021).
- Thi Le, P.; Pham, T.; Hsu, Y.C.; Wang, J.C. Convolutional Blur Attention Network for Cell Nuclei Segmentation. Sensors 2022, 22, 1586. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar] [CrossRef]
- Ben-Cohen, A.; Diamant, I.; Klang, E.; Amitai, M.; Greenspan, H. Fully Convolutional Network for Liver Segmentation and Lesions Detection in Deep Learning and Data Labeling for Medical Applications. In Proceedings of the Deep Learning and Data Labeling for Medical Applications: 1st International Workshop (LABELS 2016), the 2nd International Workshop (DLMIA 2016), Held in Conjunction with MICCAI 2016, Athens, Greece, 21 October 2016; Lecture Notes in Computer Science. Carneiro, G., Mateus, D., Peter, L., Eds.; Springer: Cham, Switzerland, 2016; Volume 10008, pp. 77–85. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Lecture Notes in Computer Science; Navab, N., Hornegger, J., Wells, W., Frangi, A., Eds.; Springer: Cham, Switzerland, 2015; Volume 9321, pp. 234–241. [Google Scholar] [CrossRef]
- Shibuya, E.; Hotta, K. Cell Image Segmentation by Using Feedback and Convolutional LSTM. Vis. Comput. 2021, 38, 3791–3801. [Google Scholar] [CrossRef]
- Ghaznavi, A.; Rychtáriková, R.; Saberioon, M.; Štys, D. Cell Segmentation from Telecentric Bright-Field Transmitted Light Microscopy Images Using a Residual Attention U-Net: A Case Study on HeLa line. Comp. Biol. Med. 2022, 147, 105805. [Google Scholar] [CrossRef] [PubMed]
- Sunny, S.P.; Khan, A.I.; Rangarajan, M.; Hariharan, A.; Birur N, P.; Pandya, H.J.; Shah, N.; Kuriakose, M.A.; Suresh, A. Oral Epithelial Cell Segmentation from Fluorescent Multichannel Cytology Images Using Deep Learning. Comput. Methods Programs Biomed. 2022, 227, 107205. [Google Scholar] [CrossRef]
- Bakir, M.E.; Yalim Keles, v.H. Deep Learning Based Cell Segmentation Using Cascaded U-Net Models. In Proceedings of the 2021 29th Signal Processing and Communications Applications Conference (SIU), Istanbul, Turkey, 9–11 June 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Piotrowski, T.; Rippel, O.; Elanzew, A.; Nießing, B.; Stucken, S.; Jung, S.; König, N.; Haupt, S.; Stappert, L.; Brüstle, O.; et al. Deep-Learning-Based Multi-Class Segmentation for Automated, Non-invasive Routine Assessment of Human Pluripotent Stem Cell Culture Status. Comp. Biol. Med. 2021, 129, 104172. [Google Scholar] [CrossRef] [PubMed]
- Platonova, G.; Štys, D.; Souček, P.; Lonhus, K.; Valenta, J.; Rychtáriková, R. Spectroscopic Approach to Correction and Visualization of Bright-Field Light Transmission Microscopy Biological Data. Photonics 2021, 8, 333. [Google Scholar] [CrossRef]
- Štys, D.; Náhlík, T.; Macháček, P.; Rychtáriková, R.; Saberioon, M. Least Information Loss (LIL) Conversion of Digital Images and Lessons Learned for Scientific Image Inspection. In Bioinformatics and Biomedical Engineering: 4th International Conference (IWBBIO 2016), Granada, Spain, 20–22 April 2016; Lecture Notes in Computer Science; Ortuno, F., Rojas, I., Eds.; Springer: Cham, Switzerland, 2016; Volume 9656, pp. 527–536. [Google Scholar] [CrossRef]
- Buades, A.; Coll, B.; Morel, J.M. A Non-local Algorithm for Image Denoising. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 2, pp. 60–65. [Google Scholar] [CrossRef]
- Ghaznavi, A.; Rychtáriková, R.; Císař, P.; Ziaei, M.; Štys, D. Telecentric Bright-Field Reflected Light Microscopic Dataset. Available online: https://doi.org/10.5061/dryad.6q573n637 (accessed on 1 January 2024).
- Zeiss. APPEAR—Automated Image Analysis. Available online: https://www.apeer.com/ (accessed on 12 December 2021).
- Lu, Y.; Liu, A.A.; Su, Y.T. Chapter 6—Mitosis detection in biomedical images. In Computer Vision for Microscopy Image Analysis; Computer Vision and Pattern Recognition; Chen, M., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 131–157. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd International Conference on Learning Representations (ICLR2015), San Diego, CA, USA, 7–9 May 2015; pp. 1–14. [Google Scholar] [CrossRef]
- Hamwi, W.A.; Almustafa, M.M. Development and Integration of VGG and Dense Transfer-Learning Systems Supported with Diverse Lung Images for Discovery of the Coronavirus Identity. Inform. Med. Unlocked 2022, 32, 101004. [Google Scholar] [CrossRef] [PubMed]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation, Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar]
- Google Research Colaboratory. Available online: https://colab.research.google.com/?utm_source=scs-index (accessed on 12 December 2021).
- Lin, T.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar] [CrossRef]
- Pan, X.; Li, L.; Yang, H.; Liu, Z.; Yang, J.; Fan, Y. Accurate Segmentation of Nuclei in Pathological Images via Sparse Reconstruction and Deep Convolutional Networks. Neurocomputing 2017, 229, 88–99. [Google Scholar] [CrossRef]
- Csurka, G.; Larlus, D.; Perronnin, F. What Is a Good Evaluation Measure for Semantic Segmentation? In Proceedings of the British Machine Vision Conference (BMVC 2013), Bristol, UK, 9–13 September 2013; BMVA Press: Durham, UK, 2013; pp. 32.1–32.11. [Google Scholar] [CrossRef]
- Vijay, B.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 228–233. [Google Scholar] [CrossRef]
- Sankesara, H. UNet. Introducing Symmetry in Segmentation. Towards Data Science. 23 January 2019. Available online: https://towardsdatascience.com/u-net-b229b32b4a71 (accessed on 1 January 2024).
- Gao, Y.; Che, X.; Xu, H.; Bie, M. An enhanced feature extraction network for medical image segmentation. Appl. Sci. 2023, 13, 6977. [Google Scholar] [CrossRef]
- Sugimoto, T.; Ito, H.; Teramoto, Y.; Yoshizawa, A.; Bise, R. Multi-Class Cell Detection Using Modified Self-Attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans, LA, USA, 21–24 June 2022; pp. 1854–1862. [Google Scholar] [CrossRef]
- Nishimura, K.; Wang, C.; Watanabe, K.; Ker, D.F.E.; Bise, R. Weakly Supervised Cell Instance Segmentation under Various Conditions. Med. Image Anal. 2021, 73, 102182. [Google Scholar] [CrossRef] [PubMed]
- Long, F. Microscopy cell nuclei segmentation with enhanced U-Net. BMC Bioinform. 2020, 21, 8. [Google Scholar] [CrossRef]
- Pravitasari, A.A.; Iriawan, N.; Almuhayar, M.; Azmi, T.; Irhamah, I.; Fithriasari, K.; Purnami, S.W.; Ferriastuti, W. UNet-VGG16 with Transfer Learning for MRI-Based Brain Tumor Segmentation. TELKOMNIKA 2020, 18, 1310–1318. [Google Scholar] [CrossRef]
- Nillmani; Sharma, N.; Saba, L.; Khanna, N.N.; Kalra, M.K.; Fouda, M.M.; Suri, J.S. Segmentation-Based Classification Deep Learning Model Embedded with Explainable AI for COVID-19 Detection in Chest X-ray Scans. Diagnostics 2022, 12, 2132. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, A.; Wang, M. A Novel End-to-End Brain Tumor Segmentation Method Using Improved Fully Convolutional Networks. Comp. Biol. Med. 2019, 108, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Patel, G.; Tekchandani, H.; Verma, S. Cellular Segmentation of Bright-field Absorbance Images Using Residual U-Net. In Proceedings of the 2019 International Conference on Advances in Computing, Communication and Control (ICAC3), Mumbai, India, 20–21 December 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Gao, E.; Jiang, H.; Zhou, Z.; Yang, C.; Chen, M.; Zhu, W.; Shi, F.; Chen, X.; Zheng, J.; Bian, Y.; et al. Automatic Multi-Tissue Segmentation in Pancreatic Pathological Images with Selected Multi-Scale Attention Network. Comp. Biol. Med. 2022, 151, 106228. [Google Scholar] [CrossRef] [PubMed]
- Ho, D.J.; Yarlagadda, D.V.; D’Alfonso, T.M.; Hanna, M.G.; Grabenstetter, A.; Ntiamoah, P.; Brogi, E.; Tan, L.K.; Fuchs, T.J. Deep Multi-Magnification Networks for Multi-Class Breast Cancer Image Segmentation. Comput. Med. Imaging Graph. 2021, 88, 101866. [Google Scholar] [CrossRef]
- Rahbari, R.; Sheahan, T.; Modes, V.; Collier, P.; Macfarlane, C.; Badge, R.M. A novel L1 retrotransposon marker for HeLa cell line identification. Biotechniques 2009, 46, 277–284. [Google Scholar] [CrossRef]
- Ghaznavi, A. GitHub Repository. Available online: https://github.com/AliGhaznavi1986/Hybrid-CNNs-for-multi-class-segmentation (accessed on 1 January 2024).
Network | Run Time | # Training Parameters |
---|---|---|
U-Net | 3:33′:29″ | 31,402,639 |
VGG19-U-Net | 1:44′:38″ | 31,172,163 |
Inception-U-Net | 1:05′:47″ | 18,083,535 |
ResNet34-U-Net | 0:56′:22″ | 24,456,444 |
Hyperparameters Name | Value |
---|---|
Activation function | ReLU |
Learning rate | 10−3 |
Number of classes | 3 |
Batch size | 8 |
Epochs number | 200 |
Early stop | 30 |
Step per epoch | 52 |
for loss function | 2 |
Network | m-IoU C1 | m-IoU C2 | m-IoU C3 | m-IoU |
---|---|---|---|---|
U-Net | 0.9894 | 0.4839 | 0.6452 | 0.7062 |
VGG19-Net | 0.9885 | 0.5489 | 0.6160 | 0.7178 |
Inception-Net | 0.9915 | 0.6614 | 0.7194 | 0.7907 |
ResNet 34-Net | 0.9911 | 0.6911 | 0.7378 | 0.8067 |
Network | Accuracy | Precision | Recall | m-IoU | m-Dice |
---|---|---|---|---|---|
U-Net | 0.9869 | 0.7897 | 0.8833 | 0.7062 | 0.8104 |
VGG19-U-Net | 0.9865 | 0.8051 | 0.8614 | 0.7178 | 0.8218 |
Inception-U-Net | 0.9904 | 0.8684 | 0.8905 | 0.7907 | 0.8762 |
ResNet 34-U-Net | 0.9909 | 0.8795 | 0.8975 | 0.8067 | 0.8873 |
Models | IoU | Dice | Acc |
---|---|---|---|
prop. U-Net | 0.7062 | 0.8104 | 0.9869 |
prop. VGG19-U-Net | 0.7178 | 0.8218 | 0.9865 |
prop. Inception-U-Net | 0.7907 | 0.8762 | 0.9904 |
prop. ResNet34-U-Net | 0.8067 | 0.8873 | 0.9909 |
Self-Attention U-Net [46] | - | 0.799 | - |
U-Net [26] | 0.777 | 0.753 | - |
U-Net [47] | - | 0.618 | - |
U-Net+ [48] | 0.567 | - | - |
VGG16-U-Net [49] | - | - | 0.961 |
VGG19-U-Net [50] | - | 0.8715 | 0.8764 |
Inception-U-Net [51] | - | 0.887 | - |
Inception-U-Net [24] | - | 0.95 | - |
ResNet34-U-Net [52] | 0.6915 | - | - |
SMANet [53] | 0.665 | 0.769 | - |
DMMN-M3 [54] | 0.706–0.870 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghaznavi, A.; Rychtáriková, R.; Císař, P.; Ziaei, M.M.; Štys, D. Symmetry Breaking in the U-Net: Hybrid Deep-Learning Multi-Class Segmentation of HeLa Cells in Reflected Light Microscopy Images. Symmetry 2024, 16, 227. https://doi.org/10.3390/sym16020227
Ghaznavi A, Rychtáriková R, Císař P, Ziaei MM, Štys D. Symmetry Breaking in the U-Net: Hybrid Deep-Learning Multi-Class Segmentation of HeLa Cells in Reflected Light Microscopy Images. Symmetry. 2024; 16(2):227. https://doi.org/10.3390/sym16020227
Chicago/Turabian StyleGhaznavi, Ali, Renata Rychtáriková, Petr Císař, Mohammad Mehdi Ziaei, and Dalibor Štys. 2024. "Symmetry Breaking in the U-Net: Hybrid Deep-Learning Multi-Class Segmentation of HeLa Cells in Reflected Light Microscopy Images" Symmetry 16, no. 2: 227. https://doi.org/10.3390/sym16020227
APA StyleGhaznavi, A., Rychtáriková, R., Císař, P., Ziaei, M. M., & Štys, D. (2024). Symmetry Breaking in the U-Net: Hybrid Deep-Learning Multi-Class Segmentation of HeLa Cells in Reflected Light Microscopy Images. Symmetry, 16(2), 227. https://doi.org/10.3390/sym16020227