A Simple Quantum Picture of the Relativistic Doppler Effect
Abstract
:1. Introduction
2. The Relativistic Doppler Effect
2.1. Coordinate Transformations
2.2. Field Amplitude Transformations
2.3. Frequency and Wavelength Transformations
3. The Quantised EM Field in the Stationary Frame
3.1. Local Photons
3.2. Field Observables in the Position Representation
3.3. EM Excitations in the Momentum Representation
4. A Quantum Picture of the Relativistic Doppler Effect
4.1. The Doppler Effect in Position Space
4.2. The Doppler Effect in the Momentum Representation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spees, A.H. Acoustic doppler effect and phase invariance. Am. J. Phys. 1956, 24, 7. [Google Scholar] [CrossRef]
- Klinaku, S. The Doppler effect is the same for both optics and acoustics. Optik 2021, 244, 167565. [Google Scholar] [CrossRef]
- Jones, R. On the Relativistic Doppler Effect. J. Opt. Soc. Am. 1939, 29, 337. [Google Scholar] [CrossRef]
- Otting, G. Der quadratische Dopplereffekt. Phys. Zeits. 1939, 40, 681. [Google Scholar]
- Krizan, J.E. Relativistic Doppler-Shift effects. Phys. Rev. D 1985, 31, 12. [Google Scholar] [CrossRef] [PubMed]
- Kaivola, M.; Poulsen, O.; Riis, E.; Au Lee, S. Measurement of the Relativistic Doppler Shift in Neon. Phys. Rev. Lett. 1985, 54, 255. [Google Scholar] [CrossRef] [PubMed]
- Mandelberg, H.I.; Witten, L. Experimental Verification of the Relativistic Doppler Effect. J. Opt. Soc. Am. 1962, 52, 529. [Google Scholar] [CrossRef]
- Olin, A.; Alexander, T.K.; Hausser, O.; McDonald, A.B.; Ewan, G.T. Measurement of the Relativistic Doppler Effect Using 8.6 MeV Capture γ Rays. Phys. Rev. D 1973, 8, 1633. [Google Scholar] [CrossRef]
- Schachinger, E.; Carbotte, J.P. Doppler shift on local density of states and local impurity scattering in the vortex state. Phys. Rev. B 2000, 62, 592. [Google Scholar] [CrossRef]
- Stachel, J.J. Einstein from “B” to “Z”—Volume 9 of Einstein Studies; Springer: Berlin/Heidelberg, Germany, 2002; p. 226. ISBN 978-0-8176-4143-6. [Google Scholar]
- Padmanabhan, H.; Padmanabhan, T. Nonrelativistic limit of quantum field theory in inertial and noninertial frames and the principle of equivalence. Phys. Rev. D 2011, 84, 085018. [Google Scholar] [CrossRef]
- Crouse, D.; Skufca, J. On the Nature of Discrete spacetime: Part 1: The distance formula, relativistic time dilation and length contraction in discrete spacetime. Log. Anal. 2018, 246, 177. [Google Scholar]
- Gwinner, G. Experimental Tests of Time Dilation in Special Relativity. Mod. Phys. Lett. A 2005, 20, 791. [Google Scholar] [CrossRef]
- Saathoff, G.; Karpuk, S.; Eisenbarth, U.; Huber, G.; Krohn, S.; Munoz Horta, R.; Reinhardt, S.; Schwalm, D.; Wolf, A.; Gwinner, G. Improved Test of Time Dilation in Special Relativity. Phys. Rev. Lett. 2003, 91, 190403. [Google Scholar] [CrossRef]
- Hafele, J.C. Relativistic Behaviour of Moving Terrestrial Clocks. Nature 1970, 227, 270. [Google Scholar] [CrossRef] [PubMed]
- Unnikrishnan, C.S. Cosmic relativity: The Fundamental theory of relativity, its implications, and experimental tests. arXiv 2004, arXiv:gr-qc/0406023. [Google Scholar]
- Cruz, C.N.; da Silva, F.A. Variation of the speed of light and a minimum speed in the scenario of an inflationary universe with accelerated expansion. Phys. Dark Universe 2018, 22, 127. [Google Scholar] [CrossRef]
- Wang, R.; Zheng, Y.; Yao, A. Generalized Sagnac Effect. Phys. Rev. Lett. 2004, 93, 143901. [Google Scholar] [CrossRef]
- Bhadra, A.; Ghose, S.; Raychaudhuri, B. A quest for the origin of the Sagnac effect. Eur. Phys. J. C 2022, 82, 649. [Google Scholar] [CrossRef]
- Choi, Y. Theoretical analysis of generalized Sagnac effect in the standard synchronization. Can. J. Phys. 2017, 95, 8. [Google Scholar] [CrossRef]
- Khan, M.S. Experimental & theoretical evidences of fallacy of space-time concept and actual state of existence of the physical universe. Indian J. Sci. Technol. 2012, 5, 3. [Google Scholar]
- Khan, M.S. Michelson-Morley experiment: A misconceived & misinterpreted experiment. Indian J. Sci. Technol. 2011, 4, 10. [Google Scholar]
- Braun, D.; Schneiter, F.; Fischer, U.R. Intrinsic measurement errors for the speed of light in vacuum. Class. Quantum Gravity 2017, 34, 175009. [Google Scholar] [CrossRef]
- Babaei, H.; Mostafazadeh, A. Quantum mechanics of a photon. J. Math. Phys. 2017, 58, 082302. [Google Scholar] [CrossRef]
- Southall, J.; Hodgson, D.; Purdy, R.; Beige, A. Locally-acting mirror Hamiltonians. J. Mod. Opt. 2021, 68, 647. [Google Scholar] [CrossRef]
- Hodgson, D.; Southall, J.; Purdy, R.; Beige, A. Local photons. Front. Photon. 2022, 3, 978855. [Google Scholar] [CrossRef]
- Hodgson, D. A Schrödinger Equation for Light. In Schrödinger Equation—Fundamentals Aspects and Potential Applications; Tahir, M.B., Sagir, M., Khan, M.I., Rafique, M., Eds.; IntechOpen: London, UK, 2024. [Google Scholar]
- Waite, G.; Hodgson, D.; Lang, B.; Alapatt, V.; Beige, A. Energy and momentum conservation of the electromagnetic field and the Abraham-Minkowski controversy. 2024; to be submitted. [Google Scholar]
- Bennett, R.; Barlow, T.M.; Beige, A. A physically motivated quantization of the electromagnetic field. Eur. J. Phys. A 2016, 37, 791. [Google Scholar] [CrossRef]
- Fang, L.; Wan, Z.; Forbes, A.; Wang, J. Vectorial Doppler metrology. Nat. Commun. 2021, 12, 4186. [Google Scholar] [CrossRef]
- Ran, J.; Zhang, Y.; Chen, X.; Fang, K.; Zhao, J.; Chen, H. Observation of the Zero Doppler Effect. Sci. Rep. 2016, 6, 23973. [Google Scholar] [CrossRef]
- Li, G.; Zentgraf, T.; Zhang, S. Rotational Doppler effect in nonlinear optics. Nat. Phys. 2016, 12, 736. [Google Scholar] [CrossRef]
- Klacka, J.; Saniga, M. Doppler effect and nature of light. Earth Moon Planet 1992, 59, 219. [Google Scholar] [CrossRef]
- Giuliani, G. On the Doppler effect for photons in rotating systems. Eur. J. Phys. 2014, 35, 025015. [Google Scholar] [CrossRef]
- Navia, C.E.; Augusto, C.R.A. Amplified Doppler shift observed in diffraction images as function of the COBE ether drift direction. arXiv 2006, arXiv:astro-ph/0604145. [Google Scholar]
- Jiang, Q.; Chen, J.; Cao, L.; Zhuang, S.; Jin, G. Dual Doppler Effect in Wedge-Type Photonic Crystals. Sci. Rep. 2018, 8, 6527. [Google Scholar] [CrossRef]
- Guo, H.; Qiu, X.; Qiu, S.; Hong, L.; Lin, F.; Ren, Y.; Chen, L. Frequency upconversion detection of rotational Doppler effect. Photon. Res. 2022, 10, 183. [Google Scholar] [CrossRef]
- Dasannacharya, B.; Das, G. Doppler Effect in Positive Rays of Hydrogen. Nature 1944, 154, 21. [Google Scholar] [CrossRef]
- Unruh, W.G. Note on black hole evaporation. Phys. Rev. D 1976, 14, 870. [Google Scholar] [CrossRef]
- Unruh, W.G.; Weiss, N. Acceleration radiation in interacting field theories. Phys. Rev. D 1984, 29, 1656. [Google Scholar] [CrossRef]
- Maybee, B.; Hodgson, D.; Beige, A.; Purdy, R. A Physically-Motivated Quantisation of the Electromagnetic Field on Curved Spacetimes. Entropy 2019, 21, 844. [Google Scholar] [CrossRef]
- Bruschi, D.E.; Ralph, T.C.; Fuentes, I.; Jennewein, T.; Razavi, M. Spacetime effects on satellite-based quantum communications. Phys. Rev. D 2014, 90, 045041. [Google Scholar] [CrossRef]
- Kohlrus, J.; Bruschi, D.E.; Fuentes, I. Quantum-metrology estimation of spacetime parameters of the Earth outperforming classical precision. Phys. Rev. A 2019, 99, 032350. [Google Scholar] [CrossRef]
- Armengol, J.M.P.; Furch, B.; de Matos, C.J.; Minster, O.; Cacciapuoti, L.; Pfennigbauer, M.; Aspelmeyer, M.; Jennewein, T.; Ursin, R.; Schmitt-Manderbach, T.; et al. Quantum communications at ESA: Towards a space experiment on the ISS. Acta Astronaut. 2008, 63, 165. [Google Scholar] [CrossRef]
- Kohlrus, J.; Bruschi, D.E.; Louko, J.; Fuentes, I. Quantum communications and quantum metrology in the spacetime of a rotating planet. EPJ Quantum Technol. 2017, 4, 7. [Google Scholar] [CrossRef]
- Ralph, T.C.; Downes, T.G. Relativistic quantum information and time machines. Contemp. Phys. 2012, 53, 1. [Google Scholar] [CrossRef]
- Friis, N.; Lee, A.R.; Truong, K.; Sabin, C.; Solano, E.; Johansson, G.; Fuentes, I. Relativistic Quantum Teleportation with superconducting circuits. Phys. Rev. Lett. 2013, 110, 113602. [Google Scholar] [CrossRef]
- Ursin, R.; Jennewein, T.; Kofler, J.; Perdigues, J.M.; Cacciapuoti, L.; de Matos, C.J.; Aspelmeyer, M.; Valencia, A.; Scheidl, T.; Acin, A.; et al. Space-quest, experiments with quantum entanglement in space. Europhys. News 2009, 40, 26. [Google Scholar] [CrossRef]
- Alsing, P.M.; Fuentes, I. Observer dependent entanglement. Class. Quantum Gravity 2012, 29, 224001. [Google Scholar] [CrossRef]
- Rideout, D.; Jennewein, T.; Amelino-Camelia, G.; Demarie, T.F.; Higgins, B.L.; Kempf, A.; Kent, A.; Laflamme, R.; Ma, X.; Mann, R.B.; et al. Fundamental quantum optics experiments conceivable with satellites: Reaching relativistic distances and velocities. Class. Quantum Gravity 2012, 29, 224011. [Google Scholar] [CrossRef]
- Michel, D. Sound and light Doppler effects. arXiv 2022, arXiv:2112.13661v2. [Google Scholar]
- Wilmshurst, T. Designing Embedded Systems with PIC Microcontrollers (Second Edition): Chap. 9—Taking Timing Further; Newnes: Oxford, UK, 2010. [Google Scholar]
- French, A.P. Special Relativity; Thomas Nelson and Sons LTD: London, UK, 1968. [Google Scholar]
- Longhurst, R.S. Geometrical and Physical Optics, 3rd ed.; Longman: London, UK, 1973. [Google Scholar]
- Bialynicki-Birula, I.; Bialynicka-Birula, Z. Why photons cannot be sharply localized. Phys. Rev. A 2009, 79, 032112. [Google Scholar] [CrossRef]
- Sipe, J.E. Photon wave functions. Phys. Rev. A 1995, 52, 1875. [Google Scholar] [CrossRef] [PubMed]
- Fleming, G.N. Reeh-Schlieder meets Newton-Wigner. Philos. Sci. 2000, 67, 495. [Google Scholar] [CrossRef]
- Dilley, J.; Nisbet-Jones, P.; Shore, B.W.; Kuhn, A. Single-photon absorption in coupled atom-cavity systems. Phys. Rev. A 2012, 85, 023834. [Google Scholar] [CrossRef]
- Kuhn, A.; Hennrich, M.; Rempe, G. Deterministic Single-Photon Source for Distributed Quantum Networking. Phys. Rev. Lett. 2002, 89, 067901. [Google Scholar] [CrossRef]
- Allcock, G.R. The Time of Arrival in Quantum Mechanics 1. Formal Considerations. Ann. Phys. 1969, 53, 253. [Google Scholar] [CrossRef]
- Allcock, G.R. The Time of Arrival in Quantum Mechanics 2. The Individual Measurement. Ann. Phys. 1969, 53, 286. [Google Scholar] [CrossRef]
- Aharonov, Y.; Oppenheim, J.; Popescu, S.; Reznik, B.; Unruh, W.G. Measurement of time of arrival in quantum mechanics. Phys. Rev. A 1998, 57, 4130. [Google Scholar] [CrossRef]
- Delgado, V.; Muga, J.G. Arrival time in quantum mechanics. Phys. Rev. A 1997, 56, 3425. [Google Scholar] [CrossRef]
- Schlichtinger, A.M.; Jadczyk, A. Time of arrival operator in the momentum space. Rept. Math. Phys. 2022, 91, 301. [Google Scholar] [CrossRef]
- Hawton, M. Photon quantum mechanics in real Hilbert space. Phys. Rev. A 2021, 104, 052211. [Google Scholar] [CrossRef]
- Hodgson, D.; Burgess, C.; Altaie, M.B.; Beige, A.; Purdy, R. An intuitive picture of the Casimir effect. arXiv 2022, arXiv:2203.14385. [Google Scholar]
- Hong, C.K.; Ou, Z.Y.; Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 1987, 59, 2044. [Google Scholar] [CrossRef] [PubMed]
- Kok, P.; Munro, W.J.; Nemoto, K.; Ralph, T.C.; Dowling, J.P.; Milburn, G.J. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 2007, 79, 135. [Google Scholar] [CrossRef]
- Alanís Rodríguez, L.A.; Schell, A.W.; Bruschi, D.E. Introduction to gravitational redshift of quantum photons propagating in curved spacetime. J. Phys. Conf. Ser. 2023, 2531, 012016. [Google Scholar] [CrossRef]
- Bruschi, D.E.; Chatzinotas, S.; Wilhelm, F.K.; Shell, A.W. Spacetime effects on wave packets of coherent light. Phys. Rev. D 2021, 104, 085015. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hodgson, D.; Kanzi, S.; Beige, A. A Simple Quantum Picture of the Relativistic Doppler Effect. Symmetry 2024, 16, 279. https://doi.org/10.3390/sym16030279
Hodgson D, Kanzi S, Beige A. A Simple Quantum Picture of the Relativistic Doppler Effect. Symmetry. 2024; 16(3):279. https://doi.org/10.3390/sym16030279
Chicago/Turabian StyleHodgson, Daniel, Sara Kanzi, and Almut Beige. 2024. "A Simple Quantum Picture of the Relativistic Doppler Effect" Symmetry 16, no. 3: 279. https://doi.org/10.3390/sym16030279
APA StyleHodgson, D., Kanzi, S., & Beige, A. (2024). A Simple Quantum Picture of the Relativistic Doppler Effect. Symmetry, 16(3), 279. https://doi.org/10.3390/sym16030279