A New Subclass of Analytic Functions Associated with the q-Derivative Operator Related to the Pascal Distribution Series
Abstract
:1. Introduction
2. Main Results
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dixit, K.K.; Pal, S.K. On a class of univalent functions related to complex order. Indian J. Pure Appl. Math. 1995, 26, 889–896. [Google Scholar]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-functions and a certain difference operator. Earth Environ. Sci. Trans. R. Soc. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Ahuja, O.P.; Çetinkaya, A.; Polatoğlu, Y. Bieberbach-de Branges and Fekete-Szegö inequalities for certain families of q-convex and q-close-to-convex functions. J. Comput. Anal. Appl. 2019, 26, 639–649. [Google Scholar]
- Aldweby, H.; Darus, M. On Fekete-Szegö problems for certain subclasses defined by q-derivative. J. Funct. Spaces 2017, 2017, 7156738. [Google Scholar] [CrossRef]
- Aldweby, H.; Darus, M. A note on q-integral operators. Electron. Notes Discret. Math. 2018, 67, 25–30. [Google Scholar] [CrossRef]
- Al-Hawary, T.; Yousef, F.; Frasin, B.A. Subclasses of analytic functions of complex order involving Jackson (p, q)-derivative. Proceedings of International Conference on Fractional Differentiation and Its Applications (ICFDA), Ajman, United Arab Emirates, 14–16 March 2018. [Google Scholar]
- Aouf, M.K.; Mostafa, A.O.; Al-Quhali, F.Y. Properties for class of bi-uniformly univalent functions defined by Salagean type q-difference operator. Int. J. Open Probl. Complex Anal. 2019, 11, 2. [Google Scholar]
- Araci, S.; Duran, U.; Acikgoz, M.; Srivastava, H.M. A certain (p, q)-derivative operator and associated divided differences. J. Inequal. Appl. 2016, 2016, 301. [Google Scholar] [CrossRef]
- Frasin, B.A.; Murugusundaramoorthy, G. A subordination results for a class of analytic functions defined by q-differential operator. Ann. Univ. Paedagog. Cracov. Stud. Math. 2020, 19, 53–64. [Google Scholar] [CrossRef]
- Ibrahim, R.W.; Darus, M. On a class of analytic functions associated with a complex domain concerning q-differential-difference operator. Adv. Differ. Equ. 2019, 2019, 515. [Google Scholar] [CrossRef]
- Ismail, M.E.H.; Merkes, E.; Steyr, D. A generalization of starlike functions. Complex Var. Theory 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Kamali, M.; Akbulut, S. On a subclass of certain convex functions with negative coefficients. J. Appl. Math. Comput. 2002, 145, 341–350. [Google Scholar] [CrossRef]
- Khan, B.; Srivastava, H.M.; Khan, N.; Darus, M.; Tahir, M.; Ahmad, Q.Z. Coefficient estimates for a subclass of analytic functions associated with a certain leaf-like domain. Mathematics 2020, 8, 1334. [Google Scholar] [CrossRef]
- Mahmood, S.; Sokół, J. New subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator. Res. Math. 2017, 71, 1345–1357. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Selvaraj, C.; Babu, O.S. Subclasses of starlike functions associated with fractional q-calculus operators. J. Complex Anal. 2013, 2013, 572718. [Google Scholar] [CrossRef]
- Ramachandran, C.; Soupramanien, T.; Frasin, B.A. New subclasses of analytic function associated with q-difference operator. Eur. J. Pure Appl. 2017, 10, 348–362. [Google Scholar]
- Rehman, M.S.U.; Ahmad, Q.Z.; Srivastava, H.M.; Khan, N.; Darus, M.; Khan, B. Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions. AIMS Math. 2021, 6, 1110–1125. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inf. Sci. 2011, 5, 390–444. [Google Scholar]
- Srivastava, H.M.; Bansal, D. Close-to-convexity of a certain family of q-Mittag-Leffer functions. J. Nonlinear Var. Anal. 2017, 1, 61–69. [Google Scholar]
- Srivastava, H.M.; Zahoor, Q.; Khan, N.; Khan, N.; Khan, B. Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain. Mathematics 2019, 7, 181. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Raza, N.; Jarad, E.S.A.A.; Srivastava, G.; AbuJarad, M.H. Fekete-Szegö inequality for classes of (p; q)-starlike and (p; q)-convex functions. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2019, 113, 3563–3584. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general classes of q-starlike functions associated with the Janowski functions. Symmetry 2019, 11, 292. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general families of q-starlike functions associated with the Janowski functions. Filomat 2019, 33, 2613–2626. [Google Scholar] [CrossRef]
- Srivastava, H.M. An introductory overview of Bessel polynomials, the generalized Bessel polynomials and the q-Bessel polynomials. Symmetry 2023, 15, 822. [Google Scholar] [CrossRef]
- Srivastava, R.; Zayed, H.M. Subclasses of analytic functions of complex order defined by q-derivative operator. Stud. Univ. Babes-Bolyai Math. 2019, 64, 69–78. [Google Scholar] [CrossRef]
- El-Deeb, S.M.; Bulboacă, T.; Dziok, J. Pascal distribution series connected with certain subclasses of univalent functions. Kyungpook Math. J. 2019, 59, 301–314. [Google Scholar]
- Frasin, B.A.; Darus, M. Subclass of analytic functions defined by q-derivative operator associated with Pascal distribution series. AIMS Math. 2021, 6, 5008–5019. [Google Scholar] [CrossRef]
- Silverman, H. Univalent functions with negative coefficients. Proc. Am. Math. Soc. 1975, 51, 109–116. [Google Scholar] [CrossRef]
- Khan, N.; Khan, S.; Xin, Q.; Tchier, F.; Malik, S.N.; Javed, U. Some applications of analytic functions associated with q-fractional operator. Mathematics 2023, 11, 930. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, N.; Darus, M.; Khan, S.; Ahmad, Q.Z.; Hussain, S. Fekete-Szegö type problems and their applications for a subclass of q-starlike functions with respect to symmetrical points. Mathematics 2020, 8, 842. [Google Scholar] [CrossRef]
- Khan, M.F.; Goswami, A.; Khan, S. Certain new subclass of multivalent q-starlike functions associated with q-symmetric calculus. Fractal Fract. 2022, 6, 367. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Srivastava, R.; Liu, J.-L. A New Subclass of Analytic Functions Associated with the q-Derivative Operator Related to the Pascal Distribution Series. Symmetry 2024, 16, 280. https://doi.org/10.3390/sym16030280
Yang Y, Srivastava R, Liu J-L. A New Subclass of Analytic Functions Associated with the q-Derivative Operator Related to the Pascal Distribution Series. Symmetry. 2024; 16(3):280. https://doi.org/10.3390/sym16030280
Chicago/Turabian StyleYang, Ying, Rekha Srivastava, and Jin-Lin Liu. 2024. "A New Subclass of Analytic Functions Associated with the q-Derivative Operator Related to the Pascal Distribution Series" Symmetry 16, no. 3: 280. https://doi.org/10.3390/sym16030280
APA StyleYang, Y., Srivastava, R., & Liu, J. -L. (2024). A New Subclass of Analytic Functions Associated with the q-Derivative Operator Related to the Pascal Distribution Series. Symmetry, 16(3), 280. https://doi.org/10.3390/sym16030280