On Third Hankel Determinant for Certain Subclass of Bi-Univalent Functions
Abstract
:1. Introduction
2. Main Results
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duren, P.L. Univalent Functions. In Grundlehren der Mathematischen Wissenschaften, Band 259; Springer: New York, NY, USA; Berlin/Hidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.A.; Clunie, J.G. Aspects of Contemporary Complex Analysis. In Proceedings of the NATO Advanced Study Institute Held at the University of Durham, Durham, UK, 1–20 July 1979; Academic Press: New York, NY, USA; London, UK, 1980. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of an univalent functions in: |z|<1. Arch. Ration. Mech. Anal. 1969, 32, 100–112. [Google Scholar]
- Kedzierawski, A.W. Some remarks on bi-univalent functions. Ann. Univ. Mariae Curie Sklodowska Sect. A 1985, 39, 77–81. [Google Scholar]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Stud. Univ. Babes Bolyai Math. 1986, 31, 70–77. [Google Scholar]
- Altinkaya, S.; Yalcin, S. Initial coefficient bounds for a general class of bi-univalent functions. Int. J. Anal. 2014, 2014, 867871. [Google Scholar]
- Atshan, W.G.; Badawi, E.I. Results on coefficients estimates for subclasses of analytic and bi-univalent functions. J. Phys. Conf. Ser. 2019, 1294, 032025. [Google Scholar] [CrossRef]
- Atshan, W.G.; Rahman, I.A.R.; Lupas, A.A. Some results of new subclasses for bi-univalent functions using quasi-subordination. Symmetry 2021, 13, 1653. [Google Scholar] [CrossRef]
- Cantor, D.G. Power series with integral coefficients. Bull. Am. Math. Soc. 1963, 69, 362–366. [Google Scholar] [CrossRef]
- Frasin, B.A.; Al-Hawary, T. Initial Maclaurin coefficients bounds for new subclasses of bi-univalent functions. Theory Appl. Math. Comput. Sci. 2015, 5, 186–193. [Google Scholar]
- Patil, A.B.; Naik, U.H. Estimates on initial coefficients of certain subclasses of bi-univalent functions associated with quasi- subordination. Glob. J. Math. Anal. 2017, 5, 6–10. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- Yalcin, S.; Atshan, W.G.; Hassan, H.Z. Coefficients assessment for certain subclasses of bi-univalent functions related with quasi-subordination. Publ. L’Institut Math. Nouv. Sér. 2020, 108, 155–162. [Google Scholar] [CrossRef]
- Noonan, W.; Thomas, D.K. On the second Hankel determinant of a really mean p-valent functions. Trans. Am. Math. Soc. 1976, 223, 337–346. [Google Scholar]
- Babalola, K.O. On H3(1) Hankel determinant for some classes of univalent functions. Inequal. Theory Appl. 2010, 6, 1–7. [Google Scholar]
- Deniz, E.; Cağlar, M.; Orhan, H. Second Hankel determinant for bi-starlike and bi-convex functions of order α. Appl. Math. Comput. 2015, 271, 301–307. [Google Scholar] [CrossRef]
- Orhan, H.; Çaglar, M.; Cotirla, L.-I. Third Hankel Determinant for a Subfamily of Holomorphic Functions Related with Lemniscate of Bernoulli. Mathematics 2023, 11, 1147. [Google Scholar] [CrossRef]
- Buyankara, M.; Çaglar, M. Hankel and Toeplitz determinants for a subclass of analytic functions. Mat. Stud. 2023, 60, 132–137. [Google Scholar] [CrossRef]
- Al-Ameedee, S.A.; Atshan, W.G.; Al-Maamori, F.A. Second Hankel determinant for certain subclasses of bi-univalent functions. J. Phys. Conf. Ser. 2020, 1664, 012044. [Google Scholar] [CrossRef]
- Atshan, W.G.; Al-Sajjad, R.A.; Altinkaya, S. On the Hankel determinant of m-fold symmetric bi-univalent functions using a new operator. Gazi Univ. J. Sci. 2023, 36, 349–360. [Google Scholar]
- Fekete, M.; Szegö, G. Eine Bemerkung über ungerade Schlichte Funktionen. J. Lond. Math. Soc. 1933, 1, 85–89. [Google Scholar] [CrossRef]
- Guney, H.O.; Murugusundaramoorthy, G.; Vijaya, K. Coefficient bounds for subclasses of bi-univalent functions associated with the Chebyshev polynomials. J. Complex Anal. 2017, 2017, 4150210. [Google Scholar]
- Darweesh, A.M.; Atshan, W.G.; Battor, A.H.; Mahdi, M.S. On the third Hankel determinant of certain subclass of bi-univalent functions. Math. Model. Eng. Probl. 2023, 10, 1087–1095. [Google Scholar] [CrossRef]
- Rahman, I.A.R.; Atshan, W.G.; Oros, G.I. New concept on fourth Hankel determinant of a certain subclass of analytic functions. Afr. Mat. 2022, 33, 7. [Google Scholar] [CrossRef]
- Khan, A.; Haq, M.; Cotîrlă, L.I.; Oros, G.I. Bernardi Integral Operator and Its Application to the Fourth Hankel Determinant. J. Funct. Spaces 2022, 2022, 4227493. [Google Scholar] [CrossRef]
- Grenander, U.; Szegö, G. Toeplitz Forms and Their Applications, California Monographs in Mathematical Sciences; University California Press: Berkeley, CA, USA, 1958. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shakir, Q.A.; Atshan, W.G. On Third Hankel Determinant for Certain Subclass of Bi-Univalent Functions. Symmetry 2024, 16, 239. https://doi.org/10.3390/sym16020239
Shakir QA, Atshan WG. On Third Hankel Determinant for Certain Subclass of Bi-Univalent Functions. Symmetry. 2024; 16(2):239. https://doi.org/10.3390/sym16020239
Chicago/Turabian StyleShakir, Qasim Ali, and Waggas Galib Atshan. 2024. "On Third Hankel Determinant for Certain Subclass of Bi-Univalent Functions" Symmetry 16, no. 2: 239. https://doi.org/10.3390/sym16020239
APA StyleShakir, Q. A., & Atshan, W. G. (2024). On Third Hankel Determinant for Certain Subclass of Bi-Univalent Functions. Symmetry, 16(2), 239. https://doi.org/10.3390/sym16020239