New Trends in Symmetry in Optimization Theory, Algorithms and Applications
Author Contributions
Funding
Conflicts of Interest
References
- Nemirovskii, A.S.; Nesterov, Y.E. Interior-Point Polynomial Algorithms in Convex Programming; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1993. [Google Scholar]
- Wright, S.J. Primal-Dual Interior-Point Methods; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1997. [Google Scholar]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 1996, 5, 267–288. [Google Scholar] [CrossRef]
- Lu, Z.S. Adaptive first-order methods for general sparse inverse covariance selection. SIAM J. Matrix Anal. Appl. 2009, 31, 2000–2016. [Google Scholar] [CrossRef]
- Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 2011, 3, 1–122. [Google Scholar] [CrossRef]
- Byrd, R.H.; Chin, G.M.; Nocedal, J.; Oztoprak, F. A family of second-order methods for convex ℓ1-regularized optimization. Math. Program. 2016, 159, 435–467. [Google Scholar] [CrossRef]
- Pietrosanu, M.; Gao, J.; Kong, L.; Jiang, B.; Niu, D. Advanced algorithms for penalized quantile and composite quantile regression. Comput. Stat. 2021, 36, 333–346. [Google Scholar] [CrossRef]
- Azevedo, B.F.; Rocha, A.M.A.C.; Pereira, A.I. Hybrid approaches to optimization and machine learning methods: A systematic literature review. In Machine Learning; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar] [CrossRef]
- Gunjan, A.; Bhattacharyya, S. A brief review of portfolio optimization techniques. Artif. Intell. Rev. 2023, 56, 3847–3886. [Google Scholar] [CrossRef]
- Rizk-Allah, R.M.; Hassanien, A.E. A comprehensive survey on the sine-cosine optimization algorithm. Artif. Intell. Rev. 2023, 56, 4801–4858. [Google Scholar] [CrossRef]
- Mišić, J.; Kemiveš, A.; Ranđelović, M.; Ranđelović, D. An Asymmetric Ensemble Method for Determining the Importance of Individual Factors of a Univariate Problem. Symmetry 2023, 15, 2050. [Google Scholar] [CrossRef]
- Ahmed, Z.H.; Hameed, A.S.; Mutar, M.L.; Haron, H. An Enhanced Ant Colony System Algorithm Based on Subpaths for Solving the Capacitated Vehicle Routing Problem. Symmetry 2023, 15, 2020. [Google Scholar] [CrossRef]
- Wang, G.; Yao, S.; Pei, M.; Xu, J. A Three-Dimensional Subspace Algorithm Based on the Symmetry of the Approximation Model and WYL Conjugate Gradient Method. Symmetry 2023, 15, 1207. [Google Scholar] [CrossRef]
- Cheng, X.; Yu, J.; Chen, X.; Yu, J.; Cheng, B. Preassigned-Time Bipartite Flocking Consensus Problem in Multi-Agent Systems. Symmetry 2023, 15, 1105. [Google Scholar] [CrossRef]
- Zhang, Y.; Tao, J.; Lv, Y.; Wang, G. An Improved DCC Model Based on Large-Dimensional Covariance Matrices Estimation and Its Applications. Symmetry 2023, 15, 953. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Tao, J. New Trends in Symmetry in Optimization Theory, Algorithms and Applications. Symmetry 2024, 16, 284. https://doi.org/10.3390/sym16030284
Wang G, Tao J. New Trends in Symmetry in Optimization Theory, Algorithms and Applications. Symmetry. 2024; 16(3):284. https://doi.org/10.3390/sym16030284
Chicago/Turabian StyleWang, Guoqiang, and Jiyuan Tao. 2024. "New Trends in Symmetry in Optimization Theory, Algorithms and Applications" Symmetry 16, no. 3: 284. https://doi.org/10.3390/sym16030284
APA StyleWang, G., & Tao, J. (2024). New Trends in Symmetry in Optimization Theory, Algorithms and Applications. Symmetry, 16(3), 284. https://doi.org/10.3390/sym16030284