Rotating Machinery Fault Diagnosis with Limited Multisensor Fusion Samples by Fused Attention-Guided Wasserstein GAN
Abstract
:1. Introduction
- (1)
- The fused attention (FA) mechanism is proposed, which employs a weighted fusion approach to integrate features extracted using a lightweight channel attention mechanism and the improved self-attention mechanism module, facilitating the extraction of important features from global, local and channel levels to enhance the quality of the generated samples.
- (2)
- The generator in the basic WGAN model is enhanced by adding the L1 loss function, which aims to make generated samples closer to real samples. Meanwhile, the GP term is incorporated into the discriminator to address the issues of gradient vanishing or gradient explosion in the training process. Furthermore, the data augmentation model FAWGAN-GP is proposed by introducing FA into both the generator and discriminator.
- (3)
- To address the limitation posed by single-sensor incomplete information and the challenge of limited fault samples, a novel fault diagnosis method for rotating machinery with limited multisensor fusion samples is proposed based on the proposed model FAWGAN-GP.
2. Basic Theory
2.1. Multisensor Fusion
2.2. WGAN
2.3. Self-Attention Mechanism
3. The Proposed Method
3.1. Generative Model Based on WGAN-GP
3.2. The FA Mechanism Module
3.2.1. Lightweight Channel Attention Mechanism
3.2.2. The Improved Self-Attention Mechanism Module
3.2.3. Integration Operation
3.3. FAWGAN-GP-Based Data Augmentation Approach
3.4. Overall Framework of Fault Diagnosis
4. Case Studies
4.1. Case 1: KAT Bearing Dataset
4.2. Case 2: WT Gearbox Dataset
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, G.; Wu, P.; Lv, Z.; Hou, J.; Ma, B.; Han, Y. Few-shot fault diagnosis method of rotating machinery using novel MCGM based CNN. IEEE Trans. Industr. Inform. 2023, 19, 10944–10955. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Q.; He, X.; Sun, G.; Zhou, D. Compound-fault diagnosis of rotating machinery: A fused imbalance learning method. IEEE Trans. Control. Syst. Technol. 2021, 29, 1462–1474. [Google Scholar] [CrossRef]
- Gao, Z.; Cecati, C.; Ding, S. A survey of fault diagnosis and fault-tolerant techniques—Part I: Fault diagnosis with model-based and signal-based approaches. IEEE Trans. Ind. Electron. 2015, 62, 3757–3767. [Google Scholar] [CrossRef]
- Liao, W.; Fu, W.; Yang, K.; Tan, C.; Huang, Y. Multi-scale residual neural network with enhanced gated recurrent unit for fault diagnosis of rolling bearing. Meas. Sci. Technol. 2024, 35, 056114. [Google Scholar] [CrossRef]
- Wang, M.; Cao, H.; Ai, Z.; Zhang, Q. Fault diagnosis of ship ballast water system based on support vector machine optimized by improved sparrow search algorithm. IEEE Access 2024, 12, 17045–17057. [Google Scholar] [CrossRef]
- Zhao, X.; Jia, M.; Bin, J.; Wang, T.; Liu, Z. Multiple-order graphical deep extreme learning machine for unsupervised fault diagnosis of rolling bearing. IEEE Trans. Instrum. Meas. 2021, 70, 3506012. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, H.; Zhao, T.; Zou, Z.; Shen, B.; Yang, L. A new convolutional neural network with random forest method for hydrogen sensor fault diagnosis. IEEE Access 2020, 8, 85421–85430. [Google Scholar] [CrossRef]
- He, C.; Shi, H.; Si, J.; Li, J. Physics-informed interpretable wavelet weight initialization and balanced dynamic adaptive threshold for intelligent fault diagnosis of rolling bearings. J. Manuf. Syst. 2023, 70, 579–592. [Google Scholar] [CrossRef]
- Xie, T.; Huang, X.; Choi, S. Intelligent mechanical fault diagnosis using multisensor fusion and convolution neural network. IEEE Trans. Industr. Inform. 2022, 18, 3213–3223. [Google Scholar] [CrossRef]
- An, Y.; Zhang, K.; Liu, Q.; Chai, Y.; Huang, X. Rolling bearing fault diagnosis method base on periodic sparse attention and LSTM. IEEE Sens. J. 2022, 22, 12044–12053. [Google Scholar] [CrossRef]
- Jia, N.; Cheng, Y.; Liu, Y.; Tian, Y. Intelligent fault diagnosis of rotating machines based on wavelet time-frequency diagram and optimized stacked denoising auto-encoder. IEEE Sens. J. 2022, 22, 17139–17150. [Google Scholar] [CrossRef]
- Xing, S.; Lei, Y.; Wang, S.; Jia, F. Distribution-invariant deep belief network for intelligent fault diagnosis of machines under new working conditions. IEEE Trans. Ind. Electron. 2021, 68, 2617–2625. [Google Scholar] [CrossRef]
- Hou, X.; Du, F.; Huang, K.; Qiu, J.; Zhong, X. A current-based fault diagnosis method for rotating machinery with limited Training samples. IEEE Trans. Instrum. Meas. 2023, 72, 3530414. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems 27, Montreal, QC, Canada, 8–13 December 2014. [Google Scholar]
- Gao, H.; Zhang, X.; Gao, X.; Li, F.; Han, H. ICoT-GAN: Integrated convolutional transformer GAN for rolling bearings fault diagnosis under limited data condition. IEEE Trans. Instrum. Meas. 2023, 72, 3515114. [Google Scholar] [CrossRef]
- Fan, J.; Yuan, X.; Miao, Z.; Sun, Z.; Mei, X.; Zhou, F. Full attention wasserstein GAN with gradient normalization for fault diagnosis under imbalanced data. IEEE Trans. Instrum. Meas. 2022, 71, 3517516. [Google Scholar] [CrossRef]
- Yang, J.; Liu, J.; Xie, J.; Wang, C.; Ding, T. Conditional GAN and 2-D CNN for bearing fault diagnosis with small samples. IEEE Trans. Instrum. Meas. 2021, 70, 3525712. [Google Scholar] [CrossRef]
- Wan, W.; He, S.; Chen, J.; Li, A.; Feng, Y. QSCGAN: An un-supervised quick self-attention convolutional GAN for LRE bearing fault diagnosis under limited label-lacked data. IEEE Trans. Instrum. Meas. 2021, 70, 3527816. [Google Scholar] [CrossRef]
- Zhong, Z.; Liu, H.; Mao, W.; Xie, X.; Hao, W.; Cui, Y. Imbalanced bearing fault diagnosis based on RFH-GAN and PSA-DRSN. IEEE Access 2023, 11, 131926–131938. [Google Scholar] [CrossRef]
- Li, W.; Zhong, X.; Shao, H.; Cai, B.; Yang, X. Multi-mode data augmentation and fault diagnosis of rotating machinery using modified ACGAN designed with new framework. Adv. Eng. Inform. 2022, 52, 101552. [Google Scholar] [CrossRef]
- Huo, Z.; Martínez-García, M.; Zhang, Y.; Shu, L. A multisensor information fusion method for high-reliability fault diagnosis of rotating machinery. IEEE Trans. Instrum. Meas. 2022, 71, 3500412. [Google Scholar] [CrossRef]
- Ma, M.; Sun, C.; Chen, X. Deep coupling autoencoder for fault diagnosis with multimodal sensory data. IEEE Trans. Industr. Inform. 2018, 14, 1137–1145. [Google Scholar] [CrossRef]
- Chen, H.; Hu, N.; Cheng, Z.; Zhang, L.; Zhang, Y. A deep convolutional neural network based fusion method of two-direction vibration signal data for health state identification of planetary gearboxes. Measurement 2019, 146, 268–278. [Google Scholar] [CrossRef]
- Tian, J.; Xie, G.; Zhang, X.; Nie, X.; Li, L.; Zhang, S. Fault diagnosis with robustness and lightweight synergy under noisy environment. IEEE Sens. J. 2023, 23, 16351–16362. [Google Scholar] [CrossRef]
- Pan, Y.; An, R.; Fu, D.; Zheng, Z.; Yang, Z. Unsupervised fault detection with a decision fusion method based on bayesian in the pumping unit. IEEE Sens. J. 2021, 21, 21829–21838. [Google Scholar] [CrossRef]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Volume 70, pp. 214–223. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.; Kaiser, L. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems 30, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A. Improved training of wasserstein gans. In Proceedings of the Advances in Neural Information Processing Systems 30, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Jia, Z.; Liu, Z.; Vong, C.; Pecht, M. A rotating machinery fault diagnosis method based on feature learning of thermal images. IEEE Access 2017, 7, 12348–12359. [Google Scholar] [CrossRef]
- Hendrycks, D.; Gimpel, K. Gaussian error linear units (gelus). arXiv 2016. [Google Scholar] [CrossRef]
- Lessmeier, C.; Christian, J.; Zimmer, D.; Sextro, W. Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: A benchmark data set for data-driven classification. In Proceedings of the PHM Society European Conference, Bilbao, Spain, 5–8 July 2016; Volume 3. [Google Scholar]
- Liu, D.; Cui, L.; Cheng, W. A review on deep learning in planetary gearbox health state recognition: Methods, applications, and dataset publication. Meas. Sci. Technol. 2023, 35, 012002. [Google Scholar] [CrossRef]
Network | Layer | Operation | Strides | Activation Function |
---|---|---|---|---|
Discriminator | Input (64 × 64 × 3) | — | — | — |
Conv2D (4 × 4 × 32) | None | 2 × 2 | LReLU | |
Conv2D (4 × 4 × 64) | None | 2 × 2 | LReLU | |
FA (2 × 2 × 64) | None | 1 × 1 | LReLU | |
Conv2D (4 × 4 × 128) | None | 2 × 2 | LReLU | |
FA (2 × 2 × 128) | None | 1 × 1 | LReLU | |
Conv2D (4 × 4 × 256) | None | 2 × 2 | LReLU | |
Dense (1) | Flatten | — | None | |
Generator | Input (100) | — | — | — |
Dense (4 × 4 × 512) | Reshape | — | GELU | |
RB (4 × 4 × 128) | BN | 2 × 2 | GELU | |
RB (4 × 4 × 64) | BN | 2 × 2 | GELU | |
FA (2 × 2 × 64) | BN | 1 × 1 | LReLU | |
RB (4 × 4 × 32) | BN | 2 × 2 | GELU | |
FA (2 × 2 × 32) | BN | 1 × 1 | LReLU | |
Conv2Dtranspose (4 × 4 × 3) | BN | 2 × 2 | Tanh | |
Residual Block (RB) | Conv2Dtranspose (4 × 4) | BN | 2 × 2 | GELU |
Conv2Dtranspose (4 × 4) | BN | 1 × 1 | GELU | |
Conv2Dtranspose (4 × 4) | Add | 2 × 2 | None |
Network | Layer | Operation | Map | Strides | Activation Function |
---|---|---|---|---|---|
Classifier | Conv2D (3 × 3) | BN | 16 | 2 × 2 | LReLU |
RB1 | BN | 16 | 1 × 1 | LReLU | |
RB1 | BN | 16 | 1 × 1 | LReLU | |
RB2 | BN | 32 | 2 × 2 | LReLU | |
RB2 | BN | 64 | 2 × 2 | LReLU | |
AveragePooling2D | 8 | 64 | N/A | N/A | |
Flatten | N/A | N/A | N/A | LReLU | |
Dense | Class_num | N/A | N/A | Softmax | |
Residual Block1 (RB1) | Conv2D (3 × 3) | BN | 16 | 1 × 1 | LReLU |
Conv2D (3 × 3) | BN | 16 | 1 × 1 | N/A | |
N/A | Add | N/A | N/A | N/A | |
Residual Block2 (RB2) | Conv2D (3 × 3) | BN | 32/64 | 2 × 2 | LReLU |
Conv2D (3 × 3) | BN | 32/64 | 1 × 1 | LReLU | |
Conv2D (3 × 3) | Add | 32/64 | 2 × 2 | LReLU | |
Conv2D (3 × 3) | BN | 32/64 | 1 × 1 | LReLU | |
Conv2D (3 × 3) | BN | 32/64 | 1 × 1 | LReLU | |
N/A | Add | N/A | N/A | N/A |
Train Dataset | Generative Samples | Test Dataset | Health Status | Class Labels |
---|---|---|---|---|
A/B/C/D | A1/B1/C1/D1 | A2/B2/C2/D2 | ||
50/35/25/15 | 250/150/100/50 | 100/100/100/100 | IORF | 0 |
50/35/25/15 | 250/150/100/50 | 100/100/100/100 | NO | 1 |
50/35/25/15 | 250/150/100/50 | 100/100/100/100 | IRF | 2 |
50/35/25/15 | 250/150/100/50 | 100/100/100/100 | ORF | 3 |
Models | Accuracy of Diagnosis (%) | |||
---|---|---|---|---|
Dataset A | Dataset B | Dataset C | Dataset D | |
DCGAN | 98.175 ± 0.500 | 97.750 ± 0.889 | 96.500 ± 0.833 | 94.250 ± 1.445 |
ACGAN | 85.000 ± 2.861 | 70.250 ± 4.236 | 54.500 ± 3.778 | 45.500 ± 8.444 |
MACGAN | 88.250 ± 1.264 | 71.750 ± 1.375 | 53.750 ± 2.111 | 47.000 ± 1.556 |
WGAN-GP | 99.200 ± 0.317 | 98.225 ± 0.756 | 97.900 ± 1.000 | 97.500 ± 0.792 |
FAWGAN-GP | 99.900 ± 0.031 | 99.650 ± 0.114 | 99.600 ± 0.128 | 98.700 ± 0.372 |
Train Dataset | Generative Samples | Test Dataset | Health Status | Class Labels |
---|---|---|---|---|
A/B/C/D | A1/B1/C1/D1 | A2/B2/C2/D2 | ||
75/65/50/35 | 150/150/150/150 | 100/100/100 | BT | 0 |
75/65/50/35 | 150/150/150/150 | 100/100/100 | NO | 1 |
75/65/50/35 | 150/150/150/150 | 100/100/100 | MT | 2 |
75/65/50/35 | 150/150/150/150 | 100/100/100 | RC | 3 |
75/65/50/35 | 150/150/150/150 | 100/100/100 | WR | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, W.; Yang, K.; Wen, B.; Shan, Y.; Li, S.; Zheng, B. Rotating Machinery Fault Diagnosis with Limited Multisensor Fusion Samples by Fused Attention-Guided Wasserstein GAN. Symmetry 2024, 16, 285. https://doi.org/10.3390/sym16030285
Fu W, Yang K, Wen B, Shan Y, Li S, Zheng B. Rotating Machinery Fault Diagnosis with Limited Multisensor Fusion Samples by Fused Attention-Guided Wasserstein GAN. Symmetry. 2024; 16(3):285. https://doi.org/10.3390/sym16030285
Chicago/Turabian StyleFu, Wenlong, Ke Yang, Bin Wen, Yahui Shan, Shuai Li, and Bo Zheng. 2024. "Rotating Machinery Fault Diagnosis with Limited Multisensor Fusion Samples by Fused Attention-Guided Wasserstein GAN" Symmetry 16, no. 3: 285. https://doi.org/10.3390/sym16030285
APA StyleFu, W., Yang, K., Wen, B., Shan, Y., Li, S., & Zheng, B. (2024). Rotating Machinery Fault Diagnosis with Limited Multisensor Fusion Samples by Fused Attention-Guided Wasserstein GAN. Symmetry, 16(3), 285. https://doi.org/10.3390/sym16030285