Dual Quaternion Matrix Equation AXB = C with Applications
Abstract
:1. Introduction
2. Preliminaries
- (1)
- ,
- (2)
- ,
- (3)
- .
- (1)
- (2)
- (3)
- (4)
- .
- (1)
- ,
- (2)
- ,
- (3)
- .
- (1)
- The quaternion matrix equation
- (2)
- (3)
- (1)
- (2)
- (3)
- (4)
- (5)
- (6)
3. The Solution of Matrix Equation (1)
- (1)
- Dual quaternion matrix Equation (1) is consistent.
- (2)
- (3)
- Now, we turn to prove that . Let Then, it is easy to verify that is a particular solution to the matrix equation By Lemma 3 and block elementary operations, we obtain
- (1)
- Dual quaternion matrix equation is consistent.
- (2)
- (3)
- (1)
- Dual quaternion matrix equation is consistent.
- (2)
- (3)
4. Applications
- (1)
- Dual quaternion matrix Equation (3) is consistent.
- (2)
- The following equalities are satisfied:
- (3)
- The following rank equalities hold:
5. Numerical Example
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Assefa, D.; Mansinha, L.; Tiampo, K.F.; Rasmussen, H.; Abdella, K. Local quaternion Fourier transform and color image texture analysis. Signal Process. 2010, 90, 1825–1835. [Google Scholar] [CrossRef]
- Cyrus, J.; Clive, C.T.; Danilo, P.M. A class of quaternion valued affine projection algorithms. Signal Process. 2013, 93, 1712–1723. [Google Scholar] [CrossRef]
- Bihan, N.L.E.; Mars, J. Singular value decomposition of matrices of quaternions: A new tool for vector-sensor signal processing. IEEE Trans. Signal Process. 2004, 84, 1177–1199. [Google Scholar] [CrossRef]
- Qi, L.Q.; Luo, Z.Y.; Wang, Q.W.; Zhang, X.Z. Quaternion matrix optimization: Motivation and analysis. J. Optim. Theory Appl. 2022, 193, 621–648. [Google Scholar] [CrossRef]
- Xu, X.; Wang, Q.W. The consistency and the general common solution to some quaternion matrix equations. Ann. Funct. Anal. 2023, 14, 53. [Google Scholar] [CrossRef]
- Dehghan, M.; Hajarian, M. On the generalized reflexive and anti-reflexive solutions to a system of matrix equations. Linear Algebra Appl. 2012, 437, 2793–2812. [Google Scholar] [CrossRef]
- Liu, X.; Song, G.J.; Zhang, Y. Determinantal representations of the solutions to systems of generalized sylvester equations. Adv. Appl. Clifford Algebr. 2019, 30, 12. [Google Scholar] [CrossRef]
- Dmytryshyn, A.; Kagstrom, B. Coupled Sylvester-type matrix equations and block diagonalization. SIAM J. Matrix Anal. Appl. 2015, 36, 580–593. [Google Scholar] [CrossRef]
- Zhang, H.; Yin, H. Conjugate gradient least squares algorithm for solving the generalized coupled sylvester matrix equations. Comput. Math. Appl. 2017, 12, 2529–2547. [Google Scholar] [CrossRef]
- Liu, L.S.; Wang, Q.W.; Chen, J.F. An exact solution to a quaternion matrix equation with an application. Symmetry 2022, 14, 375. [Google Scholar] [CrossRef]
- Ben-Israel, A.; Greville, T.N.E. Generalized Inverses: Theory and Application; John Wiley and Sons: New York, NY, USA, 1974. [Google Scholar] [CrossRef]
- Liao, A.P.; Bai, Z.Z. The constrained solutions of two matrix equations. Acta Math. Appl. Sin. Engl. Ser. 2002, 18, 671–678. [Google Scholar] [CrossRef]
- Huang, G.X.; Yin, F.; Guo, K. An iterative method for the skew-symmetric solution and the optimal approximate solution of the matrix equation AXB=C. J. Comput. Appl. Math. 2008, 212, 231–244. [Google Scholar] [CrossRef]
- Peng, Z.Y. The centro-symmetric solutions of linear matrix equation AXB = C and its optimal approximation. Chin. J. Eng. Math. 2003, 20, 60–64. [Google Scholar] [CrossRef]
- Deng, Y.B.; Bai, Z.Z.; Gao, Y.H. Iterative orthogonal direction methods for Hermitian minimum norm solutions of two consistent matrix equations. Numer. Linear Algebra Appl. 2006, 13, 801–823. [Google Scholar] [CrossRef]
- Xie, M.Y.; Wang, Q.W. The reducible solution to a quaternion tensor equation. Front. Math. China 2020, 15, 1047–1070. [Google Scholar] [CrossRef]
- Cvetković-IIić, D.S.; Dajić, A.; Koliha, J.J. Positive and real-positive solutions to the equation axa* = c in C*-algebras. Linear Multilinear Algebra 2007, 55, 535–543. [Google Scholar] [CrossRef]
- Größ, J. A note on the general Hermitian solution to AXA* = B. Bull. Malays. Math. Sci. Soc. 1998, 21, 57–62. [Google Scholar]
- Baksalary, J.K. Nonnegative definite and positive definite solutions to the matrix equation AXA* = B. Linear Multilinear Algebra 1984, 16, 133–139. [Google Scholar] [CrossRef]
- Größ, J. Nonnegative-definite and positive-definite solutions to the matrix equation AXA* = B revisited. Linear Algebra Appl. 2000, 321, 123–129. [Google Scholar] [CrossRef]
- Took, C.C.; Mandic, D.P. On the unitary diagonalisation of a special class of quaternion matrices. Appl. Math. Lett. 2011, 24, 1806–1809. [Google Scholar] [CrossRef]
- Took, C.C.; Mandic, D.P. Augmented second-order statistics of quaternion random signals. Signal Process. 2011, 91, 214–224. [Google Scholar] [CrossRef]
- Kyrchei, I. Cramer’s rules of η-(skew-)Hermitian solutions to the quaternion Sylvester-type matrix equations. Adv. Appl. Clifford Algebr. 2019, 29, 56. [Google Scholar] [CrossRef]
- Brambley, G.; Kim, J. Unit dual quaternion-based pose optimization for visual runway observations. IET Cyber Syst. Robot. 2020, 2, 181–189. [Google Scholar] [CrossRef]
- Cheng, J.; Kim, J.; Jiang, Z.; Che, W. Dual quaternion-based graph SLAM. Robot. Auton. Syst. 2016, 77, 15–24. [Google Scholar] [CrossRef]
- Wang, X.; Yu, C.; Lin, Z. A dual quaternion solution to attitude and position control for rigid body coordination. IEEE Trans. Rob. 2012, 28, 1162–1170. [Google Scholar] [CrossRef]
- Rodman, L. Topics in Quaternion Linear Algebra; Princeton University Press: Princeton, NJ, USA, 2014. [Google Scholar]
- Qi, L.Q.; Ling, C.; Yan, H. Dual quaternions and dual quaternion vectors. Commun. Appl. Math. Comput. 2022, 4, 1494–1508. [Google Scholar] [CrossRef]
- He, Z.H.; Wang, Q.W. The general solutions to some systems of matrix equations. Linear Multilinear Algebra 2015, 63, 2017–2032. [Google Scholar] [CrossRef]
- Marsaglia, G.; Styan, G.P. Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra 1974, 2, 269–292. [Google Scholar] [CrossRef]
- Xie, L.M.; Wang, Q.W. A system of dual quaternion matrix equations with its applications. arXiv 2023, arXiv:2312.10037. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Wang, Q.-W.; Xie, L.-M. Dual Quaternion Matrix Equation AXB = C with Applications. Symmetry 2024, 16, 287. https://doi.org/10.3390/sym16030287
Chen Y, Wang Q-W, Xie L-M. Dual Quaternion Matrix Equation AXB = C with Applications. Symmetry. 2024; 16(3):287. https://doi.org/10.3390/sym16030287
Chicago/Turabian StyleChen, Yan, Qing-Wen Wang, and Lv-Ming Xie. 2024. "Dual Quaternion Matrix Equation AXB = C with Applications" Symmetry 16, no. 3: 287. https://doi.org/10.3390/sym16030287
APA StyleChen, Y., Wang, Q. -W., & Xie, L. -M. (2024). Dual Quaternion Matrix Equation AXB = C with Applications. Symmetry, 16(3), 287. https://doi.org/10.3390/sym16030287