Recent Advances in Cosmological Singularities
Abstract
:1. Introduction
- Type (“Grand Bang/Grand Rip”): In this case, the scale factor becomes null (bang) or diverges (rip) for [41].
- Type 0 (“Big Bang”): In this case, the scale factor becomes null for .
- Type I (“Big Rip”): In this case, the scale factor effective energy density and effective pressure density diverge for . This results in a scenario of universal death, where everything within the Universe undergoes progressive disintegration [42].
- Type II (“sudden/quiescent singularity”): In this case, the pressure density diverges and so do the derivatives of the scalar factor from the second derivative onwards [43]. It is also known as a quiescent singularity, but this name originally appeared in contexts related to non-oscillatory singularities [44]. A special case of this is the Big Brake singularity [45].
- Type III (“Big Freeze”): In this case, the derivative of the scale factor from the first derivative onwards diverges. This was detected in generalized Chaplygin gas models [46].
- Type V (“w-singularities”): In this case, the scale factor and the energy and pressure densities are all finite, but the barotropic index becomes singular [48].
- Type ∞ (“directional singularities”): Curvature scalars vanish at the singularity, but there are causal geodesics along which the curvature components diverge [49] and, in this sense, the singularity is encountered for just some observers.
- Inaccessible singularities: These singularities appear in cosmological models with toral spatial sections, due to the infinite winding of trajectories around the tori—for instance, compactifying spatial sections of the de Sitter model to cubic tori. However, these singularities cannot be reached by physically well-defined observers, which prompts the name inaccessible singularities [50].
2. An Overview of Spacetime Singularities
- Lightlike geodesics:
- –
- According to Tipler’s criterion, a singularity is strong along a lightlike geodesic if and only if the integral
- –
- Krolak’s criterion states that the singularity is strong if and only if the integral
- Timelike geodesics:
- –
- For timelike geodesics, Ref. [51] presents various necessary and sufficient conditions, though not a single characterization.
- –
- According to Tipler’s criterion for timelike geodesics, a singularity is strong if the integral
- –
- Krolak’s criterion for timelike geodesics specifies that the singularity is strong if the integral
3. Types of Singularities
3.1. Strong Singularities
3.1.1. Big Bang Singularity (Type 0)
3.1.2. Big Rip Singularity (Type 1)
3.1.3. Grand Bang and Grand Rip Singularities (Type )
- For , the exponential term in Equation (1) decreases as t increases, and the scale factor a approaches zero as t approaches 0. This resembles an exponential-type Big Bang singularity or, if we swap t for , a Big Crunch. Given that is positive, the barotropic index w consistently remains below the phantom divide near . Specifically, the value is approached from values below it. These types of singularities are known as Grand Bang singularities.
- For , conversely, the exponential term increases as t increases, causing the scale factor a to diverge to infinity as t approaches 0. This resembles an exponential-type Big Rip singularity at , which, when considering the future, can be located by substituting t with . In this instance, the barotropic index w consistently remains above the phantom divide, and the value is approached from values above it. This scenario is termed the Grand Rip singularity.
3.1.4. Directional Singularities (Type ∞)
- For a finite with : , , , . These differ from the “Little Rip” model in the sign of , and are termed a “Little Bang” if they denote an initial singularity, or a “Little Crunch” if they represent a final singularity [101]. Instances of this case encompass models with a scale factor where and .
- When and with : , , , . Changing the sign of gives rise to a variant of the “Little Rip” scenario, featuring an asymptotically vanishing energy density and pressure. Models with a scale factor where and exemplify this case.
- For a finite : , , , and a finite . This case applies to models like with , as explored in [49].
3.2. Weak Singularities
3.2.1. Sudden Singularities (Type II)
3.2.2. Big Freeze Singularity (Type III)
3.2.3. Generalized Sudden Singularities (Type IV)
- For , a Type II singularity is inevitable, irrespective of the values of .
- Regardless of the sign of , the nature of singularities varies according to the values of :
- : A Type IV future singularity is evident. The parameter w approaches infinity () for ().
- : A Type III future singularity emerges, accompanied by a breach of the dominant energy condition. The parameter w approaches infinity () for ().
- : A Type I future singularity emerges if . The dominant energy condition is violated for , and w approaches () for ().
- : No finite future singularity is present.
- : A finite future singularity is absent, yet as , w approaches infinity () for ().
- : A Type II future singularity emerges. The dominant energy condition is broken, though the strong energy condition remains intact for . The parameter w approaches infinity () for ().
3.2.4. w-Singularities (Type V)
4. Singularity Removal/Avoidance Methods
4.1. Conformal Anomaly Effects near Singularities
4.2. Varying Constants Approach
4.3. Modified Gravity Effects/Quantum Gravitational Cosmologies
- For n = 1, no w-singularities occur, as is the case in the usual scenario with a conventional equation of state.
- For , w-singularities occur for all positive values of n besides unity, but w-singularities do not occur for any negative values of n.
- For , we see a very interesting behavior. In this case, completely in contrast to what happens in the usual case, no w-singularities occur for positive values of n (), but they occur only when n has negative values (). Hence, here we see the first sign of departure in the occurrence conditions of w-singularities when one considers inhomogeneous equations of state.
- For n = 1, contrary to the other cases we have considered, a w-singularity can occur, but this is possible only in the extreme case that . This cannot realistically be expected, but in principle singularities can appear in this case.
- The most interesting detail that arises when one considers this scenario is that w-singularities do not occur for any value of n and . For both positive and negative values of and n, the w-parameter remains regular and does not diverge.
5. Dynamical Systems Approach and the Goriely–Hyde Method
- We begin by considering a dynamical system described by n differential equations of the form
- Without loss of generality, the variables near the singularity can be expressed as
- Next, we calculate the Kovalevskaya matrix given byAfter obtaining the Kovalevskaya matrix, we evaluate it for different dominant balances and determine the eigenvalues. If the eigenvalues are of the form , with , then the singularity is considered general and will occur regardless of the initial conditions of the system. Conversely, if any of the eigenvalues are negative, the singularity is considered local and will only occur for certain sets of initial conditions.
- For , a Big Rip singularity occurs.
- For , a Type III singularity occurs.
- For , a Type II singularity occurs.
- For , a Type IV singularity occurs.
- For , a Type I singularity occurs.
- For , a Type III singularity develops.
- For , a Type II singularity occurs.
- For , a Type IV singularity occurs.
6. Future Outlook and Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Big Bang (Type 0): If a Big Bang occurs at time (similar series can be used for the Big Crunch too, in which case the series takes the formThe series is carefully constructed such that .
- Big Rip (Type 1): If a Big Rip occurs at time , the indicial exponents of the rip () are defined when the scale factor has a generalized power series near the rip
- Sudden singularity (Type II): If a sudden singularity occurs at time (past or future), the exponent is defined as and , resulting in the scale factor’s generalized power series near the singularity:Here, , and is a non-integer. The condition ensures finiteness, and a sufficient number of differentiations yieldsThe toy model by Barrow [43] can be expressed as
Appendix B
Scenario | Description | Example Model |
---|---|---|
Little Rip (LR) | Gradual energy density growth () over infinite time, asymptotically approaching a singularity. | |
Pseudo-Rip | Expansion accelerates with H approaching a constant () but finite value. | |
Quasi-Rip | Dark energy density first increases and then decreases , implying the disintegration and recombination of structures. | |
Little Sibling of the Big Rip | The Hubble rate and scale factor diverge, but the derivatives of the Hubble rate do not, with scalar curvature divergence. |
References
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Weinberg, S. The Cosmological Constant Problem. Rev. Mod. Phys. 1989, 61, 1–23. [Google Scholar] [CrossRef]
- Lombriser, L. On the cosmological constant problem. Phys. Lett. B 2019, 797, 134804. [Google Scholar] [CrossRef]
- Padmanabhan, T. Cosmological constant: The Weight of the vacuum. Phys. Rept. 2003, 380, 235–320. [Google Scholar] [CrossRef]
- Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rept. 2011, 509, 167–321. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rept. 2011, 505, 59–144. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. Phys. Rept. 2017, 692, 1–104. [Google Scholar] [CrossRef]
- Zlatev, I.; Wang, L.M.; Steinhardt, P.J. Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett. 1999, 82, 896–899. [Google Scholar] [CrossRef]
- Tsujikawa, S. Quintessence: A Review. Class. Quant. Grav. 2013, 30, 214003. [Google Scholar] [CrossRef]
- Faraoni, V. Inflation and quintessence with nonminimal coupling. Phys. Rev. D 2000, 62, 023504. [Google Scholar] [CrossRef]
- Gasperini, M.; Piazza, F.; Veneziano, G. Quintessence as a runaway dilaton. Phys. Rev. D 2002, 65, 023508. [Google Scholar] [CrossRef]
- Capozziello, S.; Carloni, S.; Troisi, A. Quintessence without scalar fields. Recent Res. Dev. Astron. Astrophys. 2003, 1, 625. [Google Scholar]
- Capozziello, S. Curvature quintessence. Int. J. Mod. Phys. D 2002, 11, 483–492. [Google Scholar] [CrossRef]
- Sahni, V.; Shtanov, Y. Brane world models of dark energy. JCAP 2003, 11, 014. [Google Scholar] [CrossRef]
- Sami, M.; Sahni, V. Quintessential inflation on the brane and the relic gravity wave background. Phys. Rev. D 2004, 70, 083513. [Google Scholar] [CrossRef]
- Tretyakov, P.; Toporensky, A.; Shtanov, Y.; Sahni, V. Quantum effects, soft singularities and the fate of the universe in a braneworld cosmology. Class. Quant. Grav. 2006, 23, 3259–3274. [Google Scholar] [CrossRef]
- Chen, S.; Wang, B.; Jing, J. Dynamics of interacting dark energy model in Einstein and Loop Quantum Cosmology. Phys. Rev. D 2008, 78, 123503. [Google Scholar] [CrossRef]
- Fu, X.; Yu, H.W.; Wu, P. Dynamics of interacting phantom scalar field dark energy in Loop Quantum Cosmology. Phys. Rev. D 2008, 78, 063001. [Google Scholar] [CrossRef]
- Bonanno, A.; Reuter, M. Cosmology with selfadjusting vacuum energy density from a renormalization group fixed point. Phys. Lett. B 2002, 527, 9–17. [Google Scholar] [CrossRef]
- Bonanno, A.; Reuter, M. Cosmology of the Planck era from a renormalization group for quantum gravity. Phys. Rev. D 2002, 65, 043508. [Google Scholar] [CrossRef]
- Bentivegna, E.; Bonanno, A.; Reuter, M. Confronting the IR fixed point cosmology with high redshift supernova data. JCAP 2004, 1, 1. [Google Scholar] [CrossRef]
- Reuter, M.; Saueressig, F. From big bang to asymptotic de Sitter: Complete cosmologies in a quantum gravity framework. JCAP 2005, 9, 12. [Google Scholar] [CrossRef]
- Bonanno, A.; Reuter, M. Entropy signature of the running cosmological constant. JCAP 2007, 8, 24. [Google Scholar] [CrossRef]
- Weinberg, S. Asymptotically Safe Inflation. Phys. Rev. D 2010, 81, 083535. [Google Scholar] [CrossRef]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6, Erratum in Astron. Astrophys. 2021, 652, C4. [Google Scholar] [CrossRef]
- Riess, A.G.; Casertano, S.; Yuan, W.; Macri, L.M.; Scolnic, D. Large Magellanic Cloud Cepheid standards provide a 1% foundation for the determination of the Hubble constant and stronger evidence for physics beyond ΛCDM. Astrophys. J. 2019, 876, 85. [Google Scholar] [CrossRef]
- Riess, A.G.; Yuan, W.; Macri, L.M.; Scolnic, D.; Brout, D.; Casertano, S.; Jones, D.O.; Murakami, Y.; Breuval, L.; Brink, T.G.; et al. A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km/s/Mpc Uncertainty from the Hubble Space Telescope and the SH0ES Team. arXiv 2021, arXiv:2112.04510. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Quantum escape of sudden future singularity. Phys. Lett. B 2004, 595, 1–8. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Inhomogeneous equation of state of the universe: Phantom era, future singularity and crossing the phantom barrier. Phys. Rev. D 2005, 72, 023003. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Tsujikawa, S. Properties of singularities in (phantom) dark energy universe. Phys. Rev. D 2005, 71, 063004. [Google Scholar] [CrossRef]
- Bamba, K.; Nojiri, S.; Odintsov, S.D. The Universe future in modified gravity theories: Approaching the finite-time future singularity. JCAP 2008, 10, 45. [Google Scholar] [CrossRef]
- Trivedi, O.; Khlopov, M. On finite time singularities in scalar field dark energy models based in the RS-II Braneworld. arXiv 2022, arXiv:2201.01015. [Google Scholar] [CrossRef]
- Trivedi, O.; Khlopov, M. Type V singularities in non-standard cosmological backgrounds. Phys. Dark Universe 2022, 36, 101041. [Google Scholar] [CrossRef]
- Odintsov, S.; Oikonomou, V. Singular inflationary universe from F (R) gravity. Phys. Rev. D 2015, 92, 124024. [Google Scholar] [CrossRef]
- Odintsov, S.; Oikonomou, V. Singular F (R) cosmology unifying early-and late-time acceleration with matter and radiation domination era. Class. Quantum Gravity 2016, 33, 125029. [Google Scholar] [CrossRef]
- Oikonomou, V. Singular bouncing cosmology from Gauss-Bonnet modified gravity. Phys. Rev. D 2015, 92, 124027. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V. Singular inflation from generalized equation of state fluids. Phys. Lett. B 2015, 747, 310–320. [Google Scholar] [CrossRef]
- Odintsov, S.; Oikonomou, V.K. Did the universe experienced a pressure non-crushing type cosmological singularity in the recent past? Europhys. Lett. 2022, 137, 39001. [Google Scholar] [CrossRef]
- Capozziello, S.; De Laurentis, M.; Nojiri, S.; Odintsov, S.D. Classifying and avoiding singularities in the alternative gravity dark energy models. Phys. Rev. D 2009, 79, 124007. [Google Scholar] [CrossRef]
- Ellis, G.F.; Schmidt, B.G. Singular space-times. Gen. Relativ. Gravit. 1977, 8, 915–953. [Google Scholar] [CrossRef]
- Fernández-Jambrina, L. Grand rip and grand bang/crunch cosmological singularities. Phys. Rev. D 2014, 90, 064014. [Google Scholar] [CrossRef]
- Caldwell, R.R.; Kamionkowski, M.; Weinberg, N.N. Phantom energy and cosmic doomsday. Phys. Rev. Lett. 2003, 91, 071301. [Google Scholar] [CrossRef]
- Barrow, J.D. Sudden future singularities. Class. Quant. Grav. 2004, 21, L79–L82. [Google Scholar] [CrossRef]
- Andersson, L.; Rendall, A.D. Quiescent cosmological singularities. Commun. Math. Phys. 2001, 218, 479–511. [Google Scholar] [CrossRef]
- Gorini, V.; Kamenshchik, A.Y.; Moschella, U.; Pasquier, V. Tachyons, scalar fields and cosmology. Phys. Rev. D 2004, 69, 123512. [Google Scholar] [CrossRef]
- Bouhmadi-López, M.; González-Díaz, P.F.; Martín-Moruno, P. Worse than a big rip? Phys. Lett. B 2008, 659, 1–5. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. The Final state and thermodynamics of dark energy universe. Phys. Rev. D 2004, 70, 103522. [Google Scholar] [CrossRef]
- Fernandez-Jambrina, L. w-cosmological singularities. Phys. Rev. D 2010, 82, 124004. [Google Scholar] [CrossRef]
- Fernandez-Jambrina, L. Hidden past of dark energy cosmological models. Phys. Lett. B 2007, 656, 9–14. [Google Scholar] [CrossRef]
- McInnes, B. Inaccessible singularities in toral cosmology. Class. Quantum Gravity 2007, 24, 1605. [Google Scholar] [CrossRef]
- Clarke, C.; Królak, A. Conditions for the occurence of strong curvature singularities. J. Geom. Phys. 1985, 2, 127–143. [Google Scholar] [CrossRef]
- Tipler, F.J. Singularities in conformally flat spacetimes. Phys. Lett. A 1977, 64, 8–10. [Google Scholar] [CrossRef]
- Krolak, A. Towards the proof of the cosmic censorship hypothesis. Class. Quantum Gravity 1986, 3, 267. [Google Scholar] [CrossRef]
- Rudnicki, W.; Budzyński, R.J.; Kondracki, W. Generalized strong curvature singularities and weak cosmic censorship in cosmological spacetimes. Mod. Phys. Lett. A 2006, 21, 1501–1509. [Google Scholar] [CrossRef]
- Penrose, R. Gravitational collapse: The role of general relativity. Nuovo C. Riv. Ser. 1969, 1, 252. [Google Scholar]
- Joshi, P.S. Spacetime singularities. In Springer Handbook of Spacetime; Springer: Berlin/Heidelberg, Germany, 2014; pp. 409–436. [Google Scholar]
- Christodoulou, D. Violation of cosmic censorship in the gravitational collapse of a dust cloud. Commun. Math. Phys. 1984, 93, 171–195. [Google Scholar] [CrossRef]
- Christodoulou, D. Examples of naked singularity formation in the gravitational collapse of a scalar field. Ann. Math. 1994, 140, 607–653. [Google Scholar] [CrossRef]
- Joshi, P.S.; Dwivedi, I. Strong curvature naked singularities in non-self-similar gravitational collapse. Gen. Relativ. Gravit. 1992, 24, 129–137. [Google Scholar] [CrossRef]
- Kuroda, Y. Naked singularities in the Vaidya spacetime. Prog. Theor. Phys. 1984, 72, 63–72. [Google Scholar] [CrossRef]
- Rodnianski, I.; Shlapentokh-Rothman, Y. Naked singularities for the Einstein vacuum equations: The exterior solution. arXiv 2019, arXiv:1912.08478. [Google Scholar] [CrossRef]
- Joshi, P.S.; Dwivedi, I.H. Naked singularities in spherically symmetric inhomogeneous Tolman-Bondi dust cloud collapse. Phys. Rev. D 1993, 47, 5357–5369. [Google Scholar] [CrossRef]
- Joshi, P.S.; Malafarina, D. Recent developments in gravitational collapse and spacetime singularities. Int. J. Mod. Phys. D 2011, 20, 2641–2729. [Google Scholar] [CrossRef]
- Shaikh, R.; Kocherlakota, P.; Narayan, R.; Joshi, P.S. Shadows of spherically symmetric black holes and naked singularities. Mon. Not. Roy. Astron. Soc. 2019, 482, 52–64. [Google Scholar] [CrossRef]
- Vagnozzi, S.; Roy, R.; Tsai, Y.D.; Visinelli, L.; Afrin, M.; Allahyari, A.; Bambhaniya, P.; Dey, D.; Ghosh, S.G.; Joshi, P.S.; et al. Horizon-scale tests of gravity theories and fundamental physics from the Event Horizon Telescope image of Sagittarius A. Class. Quant. Grav. 2023, 40, 165007. [Google Scholar] [CrossRef]
- Singh, T.P.; Joshi, P.S. The Final fate of spherical inhomogeneous dust collapse. Class. Quant. Grav. 1996, 13, 559–572. [Google Scholar] [CrossRef]
- Joshi, P.S.; Dadhich, N.; Maartens, R. Why do naked singularities form in gravitational collapse? Phys. Rev. D 2002, 65, 101501. [Google Scholar] [CrossRef]
- Joshi, P.S.; Malafarina, D.; Narayan, R. Equilibrium configurations from gravitational collapse. Class. Quant. Grav. 2011, 28, 235018. [Google Scholar] [CrossRef]
- Goswami, R.; Joshi, P.S.; Singh, P. Quantum evaporation of a naked singularity. Phys. Rev. Lett. 2006, 96, 031302. [Google Scholar] [CrossRef]
- Goswami, R.; Joshi, P.S. Spherical gravitational collapse in N-dimensions. Phys. Rev. D 2007, 76, 084026. [Google Scholar] [CrossRef]
- Saurabh; Bambhaniya, P.; Joshi, P.S. Imaging ultra-compact objects with radiative inefficient accretion flows. arXiv 2023, arXiv:2308.14519. [Google Scholar]
- Borde, A.; Guth, A.H.; Vilenkin, A. Inflationary space-times are incompletein past directions. Phys. Rev. Lett. 2003, 90, 151301. [Google Scholar] [CrossRef]
- Ellis, G.F.R.; Maartens, R. The emergent universe: Inflationary cosmology with no singularity. Class. Quant. Grav. 2004, 21, 223–232. [Google Scholar] [CrossRef]
- Guendelman, E.; Herrera, R.; Labrana, P.; Nissimov, E.; Pacheva, S. Emergent Cosmology, Inflation and Dark Energy. Gen. Rel. Grav. 2015, 47, 10. [Google Scholar] [CrossRef]
- Carroll, S.M.; Hoffman, M.; Trodden, M. Can the dark energy equation-of-state parameter w be less than- 1? Phys. Rev. D 2003, 68, 023509. [Google Scholar] [CrossRef]
- Parker, L.; Raval, A. Nonperturbative effects of vacuum energy on the recent expansion of the universe. Phys. Rev. D 1999, 60, 063512, Erratum in Phys. Rev. D 2003, 67, 029901. [Google Scholar] [CrossRef]
- Armendariz-Picon, C.; Damour, T.; Mukhanov, V.F. k-inflation. Phys. Lett. B 1999, 458, 209–218. [Google Scholar] [CrossRef]
- Chiba, T.; Okabe, T.; Yamaguchi, M. Kinetically driven quintessence. Phys. Rev. D 2000, 62, 023511. [Google Scholar] [CrossRef]
- Faraoni, V. Superquintessence. Int. J. Mod. Phys. D 2002, 11, 471–482. [Google Scholar] [CrossRef]
- Frampton, P.H. How to test stringy dark energy. Phys. Lett. B 2003, 555, 139–143. [Google Scholar] [CrossRef]
- McInnes, B. The dS/CFT correspondence and the big smash. JHEP 2002, 8, 29. [Google Scholar] [CrossRef]
- Elizalde, E.; Nojiri, S.; Odintsov, S.D. Late-time cosmology in (phantom) scalar-tensor theory: Dark energy and the cosmic speed-up. Phys. Rev. D 2004, 70, 043539. [Google Scholar] [CrossRef]
- Stefancic, H. Expansion around the vacuum equation of state—Sudden future singularities and asymptotic behavior. Phys. Rev. D 2005, 71, 084024. [Google Scholar] [CrossRef]
- Sami, M.; Toporensky, A.; Tretjakov, P.V.; Tsujikawa, S. The Fate of (phantom) dark energy universe with string curvature corrections. Phys. Lett. B 2005, 619, 193. [Google Scholar] [CrossRef]
- Setare, M.R.; Saridakis, E.N. Non-minimally coupled canonical, phantom and quintom models of holographic dark energy. Phys. Lett. B 2009, 671, 331–338. [Google Scholar] [CrossRef]
- Wang, A.; Wu, Y. Thermodynamics and classification of cosmological models in the Horava-Lifshitz theory of gravity. JCAP 2009, 7, 12. [Google Scholar] [CrossRef]
- Bouhmadi-Lopez, M.; Jimenez Madrid, J.A. Escaping the big rip? JCAP 2005, 5, 5. [Google Scholar] [CrossRef]
- Sami, M.; Singh, P.; Tsujikawa, S. Avoidance of future singularities in loop quantum cosmology. Phys. Rev. D 2006, 74, 043514. [Google Scholar] [CrossRef]
- Dabrowski, M.P.; Kiefer, C.; Sandhofer, B. Quantum phantom cosmology. Phys. Rev. D 2006, 74, 044022. [Google Scholar] [CrossRef]
- Gonzalez-Diaz, P.F. Axion phantom energy. Phys. Rev. D 2004, 69, 063522. [Google Scholar] [CrossRef]
- Astashenok, A.V.; Nojiri, S.; Odintsov, S.D.; Yurov, A.V. Phantom Cosmology without Big Rip Singularity. Phys. Lett. B 2012, 709, 396–403. [Google Scholar] [CrossRef]
- Barrow, J.D.; Lip, S.Z.W. The Classical Stability of Sudden and Big Rip Singularities. Phys. Rev. D 2009, 80, 043518. [Google Scholar] [CrossRef]
- Bamba, K.; de Haro, J.; Odintsov, S.D. Future Singularities and Teleparallelism in Loop Quantum Cosmology. JCAP 2013, 2, 8. [Google Scholar] [CrossRef]
- Gonzalez-Diaz, P.F. Achronal cosmic future. Phys. Rev. Lett. 2004, 93, 071301. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Is the future universe singular: Dark matter versus modified gravity? Phys. Lett. B 2010, 686, 44–48. [Google Scholar] [CrossRef]
- Frampton, P.H.; Ludwick, K.J.; Nojiri, S.; Odintsov, S.D.; Scherrer, R.J. Models for little rip dark energy. Phys. Lett. B 2012, 708, 204–211. [Google Scholar] [CrossRef]
- Frampton, P.H.; Ludwick, K.J.; Scherrer, R.J. Pseudo-rip: Cosmological models intermediate between the cosmological constant and the little rip. Phys. Rev. D 2012, 85, 083001. [Google Scholar] [CrossRef]
- Wei, H.; Wang, L.F.; Guo, X.J. Quasi-Rip: A New Type of Rip Model without Cosmic Doomsday. Phys. Rev. D 2012, 86, 083003. [Google Scholar] [CrossRef]
- Fernandez-Jambrina, L.; Lazkoz, R. Classification of cosmological milestones. Phys. Rev. D 2006, 74, 064030. [Google Scholar] [CrossRef]
- Cattoen, C.; Visser, M. Necessary and sufficient conditions for big bangs, bounces, crunches, rips, sudden singularities, and extremality events. Class. Quant. Grav. 2005, 22, 4913–4930. [Google Scholar] [CrossRef]
- Fernández-Jambrina, L. Initial directional singularity in inflationary models. Phys. Rev. D 2016, 94, 024049. [Google Scholar] [CrossRef]
- Sen, A.A.; Scherrer, R.J. Generalizing the generalized Chaplygin gas. Phys. Rev. D 2005, 72, 063511. [Google Scholar] [CrossRef]
- Bouhmadi-Lopez, M.; Chen, C.Y.; Chen, P. Cosmological singularities in Born-Infeld determinantal gravity. Phys. Rev. D 2014, 90, 123518. [Google Scholar] [CrossRef]
- Bouhmadi-López, M.; Chen, C.Y.; Chen, P. Eddington–Born–Infeld cosmology: A cosmographic approach, a tale of doomsdays and the fate of bound structures. Eur. Phys. J. C 2015, 75, 90. [Google Scholar] [CrossRef]
- Wetterich, C. Hot big bang or slow freeze? Phys. Lett. B 2014, 736, 506–514. [Google Scholar] [CrossRef]
- Houndjo, M.J.S.; Batista, C.E.M.; Campos, J.P.; Piattella, O.F. Finite-time singularities in f(R,T) gravity and the effect of conformal anomaly. Can. J. Phys. 2013, 91, 548–553. [Google Scholar] [CrossRef]
- Singh, P.; Vidotto, F. Exotic singularities and spatially curved Loop Quantum Cosmology. Phys. Rev. D 2011, 83, 064027. [Google Scholar] [CrossRef]
- Belkacemi, M.H.; Bouhmadi-Lopez, M.; Errahmani, A.; Ouali, T. The holographic induced gravity model with a Ricci dark energy: Smoothing the little rip and big rip through Gauss-Bonnet effects? Phys. Rev. D 2012, 85, 083503. [Google Scholar] [CrossRef]
- Bouhmadi-Lopez, M.; Kiefer, C.; Sandhofer, B.; Vargas Moniz, P. On the quantum fate of singularities in a dark-energy dominated universe. Phys. Rev. D 2009, 79, 124035. [Google Scholar] [CrossRef]
- Yurov, A.V.; Astashenok, A.V.; Gonzalez-Diaz, P.F. Astronomical bounds on future big freeze singularity. Grav. Cosmol. 2008, 14, 205–212. [Google Scholar] [CrossRef]
- Barrow, J.D. The Deflationary Universe: An Instability of the De Sitter Universe. Phys. Lett. B 1986, 180, 335–339. [Google Scholar] [CrossRef]
- Briscese, F.; Elizalde, E.; Nojiri, S.; Odintsov, S.D. Phantom scalar dark energy as modified gravity: Understanding the origin of the Big Rip singularity. Phys. Lett. B 2007, 646, 105–111. [Google Scholar] [CrossRef]
- Bahamonde, S.; Odintsov, S.; Oikonomou, V.; Wright, M. Correspondence of F (R) gravity singularities in Jordan and Einstein frames. Ann. Phys. 2016, 373, 96–114. [Google Scholar] [CrossRef]
- Brevik, I.; Grøn, Ø; de Haro, J.; Odintsov, S.D.; Saridakis, E.N. Viscous cosmology for early- and late-time universe. Int. J. Mod. Phys. D 2017, 26, 1730024. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. The oscillating dark energy: Future singularity and coincidence problem. Phys. Lett. B 2006, 637, 139–148. [Google Scholar] [CrossRef]
- Odintsov, S.; Oikonomou, V. Bouncing cosmology with future singularity from modified gravity. Phys. Rev. D 2015, 92, 024016. [Google Scholar] [CrossRef]
- Odintsov, S.; Oikonomou, V. Big bounce with finite-time singularity: The F (R) gravity description. Int. J. Mod. Phys. D 2017, 26, 1750085. [Google Scholar] [CrossRef]
- Bamba, K.; Nojiri, S.; Odintsov, S.D. Time-dependent matter instability and star singularity in F (R) gravity. Phys. Lett. B 2011, 698, 451–456. [Google Scholar] [CrossRef]
- Carloni, S.; Chaichian, M.; Nojiri, S.; Odintsov, S.D.; Oksanen, M.; Tureanu, A. Modified first-order Hořava-Lifshitz gravity: Hamiltonian analysis of the general theory and accelerating FRW cosmology in a power-law F (R) model. Phys. Rev. D 2010, 82, 065020. [Google Scholar] [CrossRef]
- Bamba, K.; Myrzakulov, R.; Nojiri, S.; Odintsov, S.D. Reconstruction of f (T) gravity: Rip cosmology, finite-time future singularities, and thermodynamics. Phys. Rev. D 2012, 85, 104036. [Google Scholar] [CrossRef]
- Polchinski, J. String duality. Rev. Mod. Phys. 1996, 68, 1245. [Google Scholar] [CrossRef]
- Balcerzak, A.; Dabrowski, M.P. Strings at future singularities. Phys. Rev. D 2006, 73, 101301. [Google Scholar] [CrossRef]
- Fernandez-Jambrina, L.; Lazkoz, R. Geodesic behavior of sudden future singularities. Phys. Rev. D 2004, 70, 121503. [Google Scholar] [CrossRef]
- Denkiewicz, T.; Dąbrowski, M.P.; Ghodsi, H.; Hendry, M.A. Cosmological tests of sudden future singularities. Phys. Rev. D 2012, 85, 083527. [Google Scholar] [CrossRef]
- Denkiewicz, T. Observational constraints on finite scale factor singularities. J. Cosmol. Astropart. Phys. 2012, 2012, 036. [Google Scholar] [CrossRef]
- Balcerzak, A.; Denkiewicz, T.; Lisaj, M. Are we survivors of the sudden past singularity? Eur. Phys. J. C 2023, 83, 980. [Google Scholar] [CrossRef]
- Dabrowski, M.P.; Denkieiwcz, T. Barotropic index w-singularities in cosmology. Phys. Rev. D 2009, 79, 063521. [Google Scholar] [CrossRef]
- Dabrowski, M.P. Are singularities the limits of cosmology? arXiv 2014, arXiv:1407.4851. [Google Scholar]
- Dabrowski, M.P.; Marosek, K. Regularizing cosmological singularities by varying physical constants. JCAP 2013, 02, 12. [Google Scholar] [CrossRef]
- Elizalde, E.; Khurshudyan, M.; Nojiri, S. Cosmological singularities in interacting dark energy models with an ω(q) parametrization. Int. J. Mod. Phys. D 2018, 28, 1950019. [Google Scholar] [CrossRef]
- Khurshudyan, M. Can an interacting varying Chaplygin gas and tachyonic matter accelerate Universe? Int. J. Geom. Meth. Mod. Phys. 2018, 15, 1850155. [Google Scholar] [CrossRef]
- Szydłowski, M.; Stachowski, A. Singularities in particle-like description of FRW cosmology. Eur. Phys. J. C 2018, 78, 552. [Google Scholar] [CrossRef]
- Samanta, G.C.; Goel, M.; Myrzakulov, R. Strength of the singularities, equation of state and asymptotic expansion in Kaluza–Klein space time. New Astron. 2018, 60, 74–79. [Google Scholar] [CrossRef]
- Sadri, E.; Khurshudyan, M.; Chattopadhyay, S. An interacting New Holographic Dark Energy in the framework of fractal cosmology. Astrophys. Space Sci. 2018, 363, 230. [Google Scholar] [CrossRef]
- Ozulker, E. Is the dark energy equation of state parameter singular? arXiv 2022, arXiv:2203.04167. [Google Scholar]
- Nojiri, S.; Odintsov, S.D. AdS/CFT correspondence, conformal anomaly and quantum corrected entropy bounds. Int. J. Mod. Phys. A 2001, 16, 3273–3290. [Google Scholar] [CrossRef]
- Deser, S.; Duff, M.J.; Isham, C. Non-local conformal anomalies. Nucl. Phys. B 1976, 111, 45–55. [Google Scholar] [CrossRef]
- Duff, M.J. Twenty years of the Weyl anomaly. Class. Quantum Gravity 1994, 11, 1387. [Google Scholar] [CrossRef]
- Birrell, N.D.; Birrell, N.D.; Davies, P. Quantum Fields in Curved Space; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Bamba, K.; Myrzakulov, R.; Odintsov, S.D.; Sebastiani, L. Trace-anomaly driven inflation in modified gravity and the BICEP2 result. Phys. Rev. D 2014, 90, 043505. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. DeSitter brane universe induced by phantom and quantum effects. Phys. Lett. B 2003, 565, 1–9. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Quantum de Sitter cosmology and phantom matter. Phys. Lett. B 2003, 562, 147–152. [Google Scholar] [CrossRef]
- Trivedi, O.; Khlopov, M. Singularity formation in asymptotically safe cosmology with inhomogeneous equation of state. JCAP 2022, 11, 7. [Google Scholar] [CrossRef]
- Bonanno, A.; Saueressig, F. Asymptotically safe cosmology—A status report. Comptes Rendus Phys. 2017, 18, 254–264. [Google Scholar] [CrossRef]
- Barrow, J.D. Cosmologies with varying light speed. Phys. Rev. D 1999, 59, 043515. [Google Scholar] [CrossRef]
- Dąbrowski, M.P.; Salzano, V.; Balcerzak, A.; Lazkoz, R. New tests of variability of the speed of light. In Proceedings of the EPJ Web of Conferences; EDP Sciences: Les Ulis, France, 2016; Volume 126, p. 04012. [Google Scholar]
- Leszczynska, K.; Balcerzak, A.; Dabrowski, M.P. Varying constants quantum cosmology. JCAP 2015, 02, 12. [Google Scholar] [CrossRef]
- Salzano, V.; Dabrowski, M.P. Statistical hierarchy of varying speed of light cosmologies. Astrophys. J. 2017, 851, 97. [Google Scholar] [CrossRef]
- Dirac, P.A. The cosmological constants. Nature 1937, 139, 323. [Google Scholar] [CrossRef]
- Teller, E. On the change of physical constants. Phys. Rev. 1948, 73, 801. [Google Scholar] [CrossRef]
- Tavayef, M.; Sheykhi, A.; Bamba, K.; Moradpour, H. Tsallis Holographic Dark Energy. Phys. Lett. B 2018, 781, 195–200. [Google Scholar] [CrossRef]
- Radicella, N.; Pavon, D. A thermodynamic motivation for dark energy. Gen. Rel. Grav. 2012, 44, 685–702. [Google Scholar] [CrossRef]
- Bamba, K.; Geng, C.Q.; Tsujikawa, S. Equilibrium thermodynamics in modified gravitational theories. Phys. Lett. B 2010, 688, 101–109. [Google Scholar] [CrossRef]
- Younas, M.; Jawad, A.; Qummer, S.; Moradpour, H.; Rani, S. Cosmological Implications of the Generalized Entropy Based Holographic Dark Energy Models in Dynamical Chern-Simons Modified Gravity. Adv. High Energy Phys. 2019, 2019, 1287932. [Google Scholar] [CrossRef]
- Jawad, A.; Azhar, N.; Rani, S. Entropy corrected holographic dark energy models in modified gravity. Int. J. Mod. Phys. D 2016, 26, 1750040. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Saridakis, E.N. Modified cosmology from extended entropy with varying exponent. Eur. Phys. J. C 2019, 79, 242. [Google Scholar] [CrossRef]
- Ghosh, R.; Chattopadhyay, S.; Debnath, U. A Dark Energy Model with Generalized Uncertainty Principle in the Emergent, Intermediate and Logamediate Scenarios of the Universe. Int. J. Theor. Phys. 2012, 51, 589–603. [Google Scholar] [CrossRef]
- Rashki, M.; Fathi, M.; Mostaghel, B.; Jalalzadeh, S. Interacting Dark Side of Universe Through Generalized Uncertainty Principle. Int. J. Mod. Phys. D 2019, 28, 1950081. [Google Scholar] [CrossRef]
- Paliathanasis, A.; Leon, G.; Khyllep, W.; Dutta, J.; Pan, S. Interacting quintessence in light of generalized uncertainty principle: Cosmological perturbations and dynamics. Eur. Phys. J. C 2021, 81, 607. [Google Scholar] [CrossRef]
- Calcagni, G.; Liddle, A.R. Tachyon dark energy models: Dynamics and constraints. Phys. Rev. D 2006, 74, 043528. [Google Scholar] [CrossRef]
- Gumjudpai, B.; Ward, J. Generalised DBI-Quintessence. Phys. Rev. D 2009, 80, 023528. [Google Scholar] [CrossRef]
- Chiba, T.; Dutta, S.; Scherrer, R.J. Slow-roll k-essence. Phys. Rev. D 2009, 80, 043517. [Google Scholar] [CrossRef]
- Ahn, C.; Kim, C.; Linder, E.V. Dark Energy Properties in DBI Theory. Phys. Rev. D 2009, 80, 123016. [Google Scholar] [CrossRef]
- Li, D.; Scherrer, R.J. Classifying the behavior of noncanonical quintessence. Phys. Rev. D 2016, 93, 083509. [Google Scholar] [CrossRef]
- Mandal, G.; Chakraborty, S.; Mishra, S.; Biswas, S.K. Dynamical analysis of interacting non-canonical scalar field model. arXiv 2021, arXiv:2101.04496. [Google Scholar]
- Kar, A.; Sadhukhan, S.; Debnath, U. Reconstruction of DBI-essence dark energy with f(R) gravity and its effect on black hole and wormhole mass accretion. Mod. Phys. Lett. A 2021, 36, 2150262. [Google Scholar] [CrossRef]
- Shtanov, Y.; Sahni, V. Unusual cosmological singularities in brane world models. Class. Quant. Grav. 2002, 19, L101–L107. [Google Scholar] [CrossRef]
- Bamba, K.; Odintsov, S.D.; Sebastiani, L.; Zerbini, S. Finite-time future singularities in modified Gauss-Bonnet and F(R,G) gravity and singularity avoidance. Eur. Phys. J. C 2010, 67, 295–310. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. The Future evolution and finite-time singularities in F(R)-gravity unifying the inflation and cosmic acceleration. Phys. Rev. D 2008, 78, 046006. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K. Dynamical systems perspective of cosmological finite-time singularities in f (R) gravity and interacting multifluid cosmology. Phys. Rev. D 2018, 98, 024013. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K. Study of finite-time singularities of loop quantum cosmology interacting multifluids. Phys. Rev. D 2018, 97, 124042. [Google Scholar] [CrossRef]
- Bombacigno, F.; Boudet, S.; Olmo, G.J.; Montani, G. Big bounce and future time singularity resolution in Bianchi I cosmologies: The projective invariant Nieh-Yan case. Phys. Rev. D 2021, 103, 124031. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Modified f(R) gravity consistent with realistic cosmology: From matter dominated epoch to dark energy universe. Phys. Rev. D 2006, 74, 086005. [Google Scholar] [CrossRef]
- Fernández-Jambrina, L.; Lazkoz, R. New futures for cosmological models. Phil. Trans. A. Math. Phys. Eng. Sci. 2022, 380, 20210333. [Google Scholar] [CrossRef] [PubMed]
- Chimento, L.P.; Richarte, M.G. Interacting realization of cosmological singularities with variable vacuum energy. Phys. Rev. D 2015, 92, 043511. [Google Scholar] [CrossRef]
- Chimento, L.P.; Richarte, M.G. Big brake singularity is accommodated as an exotic quintessence field. Phys. Rev. D 2016, 93, 043524, Erratum in Phys. Rev. D 2017, 95, 069902. [Google Scholar] [CrossRef]
- Cataldo, M.; Chimento, L.P.; Richarte, M.G. Finite time future singularities in the interacting dark sector. Phys. Rev. D 2017, 95, 063510. [Google Scholar] [CrossRef]
- Trivedi, O. Type V singularities with inhomogeneous equations of state. Phys. Lett. B 2022, 835, 137494. [Google Scholar] [CrossRef]
- Carroll, S.M.; Duvvuri, V.; Trodden, M.; Turner, M.S. Is cosmic speed-up due to new gravitational physics? Phys. Rev. D 2004, 70, 043528. [Google Scholar] [CrossRef]
- Abdalla, M.C.B.; Nojiri, S.; Odintsov, S.D. Consistent modified gravity: Dark energy, acceleration and the absence of cosmic doomsday. Class. Quantum Gravity 2005, 22, L35. [Google Scholar] [CrossRef]
- Elizalde, E.; Nojiri, S.; Odintsov, S.; Sebastiani, L.; Zerbini, S. Nonsingular exponential gravity: A simple theory for early-and late-time accelerated expansion. Phys. Rev. D 2011, 83, 086006. [Google Scholar] [CrossRef]
- Starobinsky, A.A. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. B 1980, 91, 99–102. [Google Scholar] [CrossRef]
- Goriely, A.; Hyde, C. Necessary and sufficient conditions for finite time singularities in ordinary differential equations. J. Differ. Equations 2000, 161, 422–448. [Google Scholar] [CrossRef]
- Bahamonde, S.; Böhmer, C.G.; Carloni, S.; Copeland, E.J.; Fang, W.; Tamanini, N. Dynamical systems applied to cosmology: Dark energy and modified gravity. Phys. Rep. 2018, 775, 1–122. [Google Scholar] [CrossRef]
- Barrow, J.D. More general sudden singularities. Class. Quantum Gravity 2004, 21, 5619. [Google Scholar] [CrossRef]
- Cotsakis, S.; Barrow, J.D. The Dominant balance at cosmological singularities. J. Phys. Conf. Ser. 2007, 68, 012004. [Google Scholar] [CrossRef]
- Cotsakis, S.; Tsokaros, A. Asymptotics of flat, radiation universes in quadratic gravity. Phys. Lett. B 2007, 651, 341–344. [Google Scholar] [CrossRef]
- Antoniadis, I.; Cotsakis, S.; Klaoudatou, I. Brane singularities and their avoidance. Class. Quantum Gravity 2010, 27, 235018. [Google Scholar] [CrossRef]
- Antoniadis, I.; Cotsakis, S.; Klaoudatou, I. Brane singularities with mixtures in the bulk. Fortschritte Phys. 2013, 61, 20–49. [Google Scholar] [CrossRef]
- Antoniadis, I.; Cotsakis, S.; Klaoudatou, I. Enveloping branes and brane-world singularities. Eur. Phys. J. C 2014, 74, 1–10. [Google Scholar] [CrossRef]
- Odintsov, S.; Oikonomou, V. Finite-time singularities in swampland-related dark-energy models. EPL (Europhys. Lett.) 2019, 126, 20002. [Google Scholar] [CrossRef]
- Maartens, R.; Koyama, K. Brane-World Gravity. Living Rev. Rel. 2010, 13, 5. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, T.; Matos, T.; Quiros, I.; Vazquez-Gonzalez, A. Self-interacting Scalar Field Trapped in a Randall-Sundrum Braneworld: The Dynamical Systems Perspective. Phys. Lett. B 2009, 676, 161–167. [Google Scholar] [CrossRef]
- Bacon, R.; Roth, M.M.; Amico, P.; Hernandez, E.; Consortium, W. Detector system challenges of the wide-field spectroscopic survey telescope (WST). Astron. Nachrichten 2023, 344, e20230117. [Google Scholar] [CrossRef]
- Actis, M.; Agnetta, G.; Aharonian, F.; Akhperjanian, A.; Aleksic, J.; Aliu, E.; Allan, D.; Allekotte, I.; Antico, F.; Antonelli, L.A.; et al. Design concepts for the Cherenkov Telescope Array CTA: An advanced facility for ground-based high-energy gamma-ray astronomy. Exper. Astron. 2011, 32, 193–316. [Google Scholar] [CrossRef]
- Amendola, L.; Appleby, S.; Avgoustidis, A.; Bacon, D.; Baker, T.; Baldi, M.; Bartolo, N.; Blanchard, A.; Bonvin, C.; Borgani, S.; et al. Cosmology and fundamental physics with the Euclid satellite. Living Rev. Rel. 2018, 21, 2. [Google Scholar] [CrossRef]
- Weltman, A.; Bull, P.; Camera, S.; Kelley, K.; Padmanabhan, H.; Pritchard, J.; Raccanelli, A.; Riemer-Sørensen, S.; Shao, L.; Andrianomena, S.; et al. Fundamental physics with the Square Kilometre Array. Publ. Astron. Soc. Austral. 2020, 37, e002. [Google Scholar] [CrossRef]
- Wenzl, L.; Doux, C.; Heinrich, C.; Bean, R.; Jain, B.; Doré, O.; Eifler, T.; Fang, X. Cosmology with the Roman Space Telescope – Synergies with CMB lensing. Mon. Not. Roy. Astron. Soc. 2022, 512, 5311–5328. [Google Scholar] [CrossRef]
- Abate, A. Large Synoptic Survey Telescope: Dark Energy Science Collaboration. arXiv 2012, arXiv:1211.0310. [Google Scholar]
- Solomon, L. Differential Equations: Geometric Theory; Dover: New York, NY, USA, 1977. [Google Scholar]
- Visser, M.; Yunes, N. Power laws, scale invariance, and generalized Frobenius series: Applications to Newtonian and TOV stars near criticality. Int. J. Mod. Phys. A 2003, 18, 3433–3468. [Google Scholar] [CrossRef]
- Frampton, P.H.; Ludwick, K.J.; Scherrer, R.J. The Little Rip. Phys. Rev. D 2011, 84, 063003. [Google Scholar] [CrossRef]
- Bouhmadi-Lopez, M.; Errahmani, A.; Martin-Moruno, P.; Ouali, T.; Tavakoli, Y. The little sibling of the big rip singularity. Int. J. Mod. Phys. D 2015, 24, 1550078. [Google Scholar] [CrossRef]
- Brevik, I.; Elizalde, E.; Nojiri, S.; Odintsov, S.D. Viscous Little Rip Cosmology. Phys. Rev. D 2011, 84, 103508. [Google Scholar] [CrossRef]
- Brevik, I.; Timoshkin, A.V. Holographic cosmology with two coupled fluids in the presence of viscosity. Int. J. Geom. Meth. Mod. Phys. 2021, 18, 2150149. [Google Scholar] [CrossRef]
- Brevik, I.; Timoshkin, A.V. Rip brane cosmology from a viscous holographic dark fluid. Int. J. Geom. Meth. Mod. Phys. 2020, 17, 2050087. [Google Scholar] [CrossRef]
- Brevik, I.; Obukhov, V.V.; Timoshkin, A.V. Cosmological Models Coupled with Dark Matter in a Dissipative Universe. Astrophys. Space Sci. 2015, 359, 11. [Google Scholar] [CrossRef]
- Brevik, I.; Obukhov, V.V.; Timoshkin, A.V. Dark Energy Coupled with Dark Matter in Viscous Fluid Cosmology. Astrophys. Space Sci. 2015, 355, 399–403. [Google Scholar] [CrossRef]
- Brevik, I.; Obukhov, V.V.; Osetrin, K.E.; Timoshkin, A.V. Little Rip cosmological models with time-dependent equation of state. Mod. Phys. Lett. A 2012, 27, 1250210. [Google Scholar] [CrossRef]
- Timoshkin, A.; Yurov, A. Little Rip, Pseudo Rip and bounce cosmology from generalized equation of state in the Universe with spatial curvature. arXiv 2023, arXiv:2305.02796. [Google Scholar] [CrossRef]
- Lohakare, S.V.; Tello-Ortiz, F.; Mishra, B.; Tripathy, S. Rip models in Ricci-Gauss-Bonnet Cosmology. arXiv 2022, arXiv:2203.11676. [Google Scholar]
- Borislavov Vasilev, T.; Bouhmadi-López, M.; Martín-Moruno, P. Classical and Quantum f(R) Cosmology: The Big Rip, the Little Rip and the Little Sibling of the Big Rip. Universe 2021, 7, 288. [Google Scholar] [CrossRef]
- Pati, L.; Kadam, S.A.; Tripathy, S.K.; Mishra, B. Rip cosmological models in extended symmetric teleparallel gravity. Phys. Dark Univ. 2022, 35, 100925. [Google Scholar] [CrossRef]
- Borislavov Vasilev, T.; Bouhmadi-López, M.; Martín-Moruno, P. Little rip in classical and quantum f(R) cosmology. Phys. Rev. D 2021, 103, 124049. [Google Scholar] [CrossRef]
- Astashenok, A.V.; Nojiri, S.; Odintsov, S.D.; Scherrer, R.J. Scalar dark energy models mimicking ΛCDM with arbitrary future evolution. Phys. Lett. B 2012, 713, 145–153. [Google Scholar] [CrossRef]
- Granda, L.N.; Loaiza, E. Big Rip and Little Rip solutions in scalar model with kinetic and Gauss Bonnet couplings. Int. J. Mod. Phys. D 2012, 2, 1250002. [Google Scholar] [CrossRef]
- Brevik, I.; Myrzakulov, R.; Nojiri, S.; Odintsov, S.D. Turbulence and Little Rip Cosmology. Phys. Rev. D 2012, 86, 063007. [Google Scholar] [CrossRef]
- Houndjo, M.J.S.; Alvarenga, F.G.; Rodrigues, M.E.; Jardim, D.F. Thermodynamics in Little Rip cosmology in the framework of a type of f(R: T) gravity. Eur. Phys. J. Plus 2014, 129, 171. [Google Scholar] [CrossRef]
- Saez-Gomez, D. Cosmological evolution, future singularities and Little Rip in viable f(R) theories and their scalar-tensor counterpart. Class. Quant. Grav. 2013, 30, 095008. [Google Scholar] [CrossRef]
- Albarran, I.; Bouhmadi-López, M.; Kiefer, C.; Marto, J.A.; Vargas Moniz, P. Classical and quantum cosmology of the little rip abrupt event. Phys. Rev. D 2016, 94, 063536. [Google Scholar] [CrossRef]
- Sarkar, A.; Chattopadhyay, S. The barrow holographic dark energy-based reconstruction of f(R) gravity and cosmology with Nojiri–Odintsov cutoff. Int. J. Geom. Meth. Mod. Phys. 2021, 18, 2150148. [Google Scholar] [CrossRef]
- Balakin, A.B.; Bochkarev, V.V. Archimedean-type force in a cosmic dark fluid: III. Big Rip, Little Rip and Cyclic solutions. Phys. Rev. D 2013, 87, 024006. [Google Scholar] [CrossRef]
- Matsumoto, J.; Sushkov, S.V. General dynamical properties of cosmological models with nonminimal kinetic coupling. JCAP 2018, 1, 40. [Google Scholar] [CrossRef]
- Meng, X.H.; Ma, Z.Y. Rip/singularity free cosmology models with bulk viscosity. Eur. Phys. J. C 2012, 72, 2053. [Google Scholar] [CrossRef]
- Morais, J.a.; Bouhmadi-López, M.; Sravan Kumar, K.; Marto, J.A.; Tavakoli, Y. Interacting 3-form dark energy models: Distinguishing interactions and avoiding the Little Sibling of the Big Rip. Phys. Dark Univ. 2017, 15, 7–30. [Google Scholar] [CrossRef]
- Bouhmadi-López, M.; Errahmani, A.; Ouali, T.; Tavakoli, Y. More on the holographic Ricci dark energy model: Smoothing Rips through interaction effects? Eur. Phys. J. C 2018, 78, 330. [Google Scholar] [CrossRef] [PubMed]
- Xi, P.; Zhai, X.H.; Li, X.Z. Alternative mechanism of avoiding the big rip or little rip for a scalar phantom field. Phys. Lett. B 2012, 706, 482–489. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trivedi, O. Recent Advances in Cosmological Singularities. Symmetry 2024, 16, 298. https://doi.org/10.3390/sym16030298
Trivedi O. Recent Advances in Cosmological Singularities. Symmetry. 2024; 16(3):298. https://doi.org/10.3390/sym16030298
Chicago/Turabian StyleTrivedi, Oem. 2024. "Recent Advances in Cosmological Singularities" Symmetry 16, no. 3: 298. https://doi.org/10.3390/sym16030298
APA StyleTrivedi, O. (2024). Recent Advances in Cosmological Singularities. Symmetry, 16(3), 298. https://doi.org/10.3390/sym16030298