On Prešić-Type Mappings: Survey
Abstract
:1. Introduction and Preliminaries
Important Notice
2. Application of Rules
3. Prešić-Type Mappings in Menger Spaces
- 1.
- ξ is left continuous on ;
- 2.
- ξ is nondecreasing;
- 3.
- and .
- 1.
- ;
- 2.
- ;
- 3.
- for ;
- 4.
- .
- (i)
- ;
- (ii)
- ;
- (iii)
- ;
- (iv)
- .
- 1.
- Convergent to if for any given and there exists a positive integer such that whenever .
- 2.
- A Cauchy sequence if for any and there exists a positive integer such that whenever .
- 1.
- is a continuous and an increasing function.
- 2.
- for all .
Application of Rules in Menger Spaces
4. Conclusions
- Define and formulate the Ćirić–Prešić–Meir–Keeler contraction according to the rule. Disprove or prove the formulated theorem, thereby contributing to the ongoing discourse in this area.
- In most works on fixed point metric theory and Prešić’s approach, we encounter the Prešić–Picard sequence given by , which demonstrates that the defined sequence is Cauchy. If the mapping T is continuous, the existence of a point u from X such that directly follows. In many works where Prešić’s approach has been considered, the continuity of the mapping T is not assumed. The natural question arises: Can we find an example of a metric space and a mapping T from X to itself that is not continuous?
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux equations integrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Ćirić, L.B. Some Recent Results in Metrical Fixed Point Theory; University of Belgrade: Belgrade, Serbia, 2003. [Google Scholar]
- Rhoades, B.E. A comparison of various definitions of contractive mappings. Trans. Am. Math. Soc. 1977, 226, 257–290. [Google Scholar] [CrossRef]
- Debnath, P.; Konwar, N.; Radenović, S. Metric Fixed Point Theory, Applications in Science, Engineering and Behavioural Sciences; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Prešić, S.B. Sur la convergence des suites. Comptes Rendus L’Acad. Paris 1965, 260, 3828–3830. [Google Scholar]
- Prešić, S.B. Sur une classe dinequations aux differences finite et sur la convergence de certaines suites. Publ. L’Institut Math. 1965, 5, 75–78. [Google Scholar]
- Chen, Y.Z. A Prešić type contractive condition and its applications. Nonlinear Anal. 2009, 71, 2012–2017. [Google Scholar] [CrossRef]
- Shukla, S.; Radenović, S.; Pantelić, S. Some fixed point theorems for Prešić-Hardy-Rogers type contractions in metric spaces. J. Math. 2013, 2013, 295093. [Google Scholar] [CrossRef]
- Shahzad, N.; Shukla, S. Set-valued G-Prešić operators on metric spaces endowed with a graph and fixed point theorems. Fixed Point Theory Appl. 2015, 2015, 24. [Google Scholar] [CrossRef]
- Khan, M.S.; Berzig, M.; Samet, B. Some convergence results for iterative sequences of Prešić type and applications. Adv. Differ. Equ. 2012, 2012, 38. [Google Scholar] [CrossRef]
- Abbas, M.; Ilić, D.; Nazir, T. Iterative Approximation of Fixed Points of Generalized Weak Prešić Type k-Step Iterative Method for a Class of Operators. Filomat 2015, 29, 713–724. [Google Scholar] [CrossRef]
- Abbas, M.; Berzig, M.; Nazir, T.; Karapinar, E. Iterative approximation on fixed points for Prešić type F-contraction operators. UPB Sci. Bull. Ser. 2016, 78, 147–160. [Google Scholar]
- Berinde, V.; Pǎcurar, M. Stability of k-step fixed point iterative methods for some Prešić type contractive mappings. J. Inequal. Appl. 2014, 2014, 149. [Google Scholar] [CrossRef]
- Wang, X.; Chen, X.; Li, W. Dynamical behavior analysis of an eighth-order Sharma’s method. Int. J. Biomath. 2023, 310, 2350068. [Google Scholar] [CrossRef]
- Wang, X.; Xu, J. Conformable vector Traub’s method for solving nonlinear systems. Numer. Algorithms 2024, 1–20. [Google Scholar] [CrossRef]
- Ćirić, L.B.; Prešić, S.B. On Prešić type generalization of Banach contraction principle. Acta Math. Univ. Comen. 2007, 76, 143–147. [Google Scholar]
- Marjanović, M.; Prešić, S.B. Remark on the convergence of a sequence. Publ. Fac. d’Électrotech. L’Univ. 1965, 155, 63–64. [Google Scholar]
- Ahmad, J.; Al-Mezel, S.A.; Agarwal, R.P. Fixed Point Results for Perov-Ćirić-Prešić-Type Q-Contractions with Applications. Mathematics 2022, 10, 2062. [Google Scholar] [CrossRef]
- Babu, A.S.; Došenović, T.; Ali, M.D.M.; Radenović, S.; Rao, K.P. Some Prešić Type Results in b-Dislocated Metric Spaces. Constr. Math. Anal. 2019, 2, 40–48. [Google Scholar] [CrossRef]
- Berinde, V.; Pǎcurar, M. Two elementary applications of some Prešić type fixed point theorems. Creat. Math. Inform. 2011, 20, 32–42. [Google Scholar] [CrossRef]
- Fukhar-ud-din, H.; Berinde, V.; Khan, A.R. Fixed point approximation of Prešić nonexpansive mappings in product of CAT(0) spaces. Carpathian J. Math. 2016, 32, 315–322. [Google Scholar] [CrossRef]
- Gordji, M.E.; Pirbavafa, S.; Ramezani, M.; Park, C.; Shin, D.Y. Prešić-Kannan-Rus fixed point theorem on partially order metric spaces. Fixed Point Theory 2014, 15, 463–474. [Google Scholar]
- George, R.; Reshma, K.P.; Rajagopalan, R. A generalized fixed point theorem of Prešić type in cone metric spaces and application to Markov process. Fixed Point Theory Appl. 2011, 2011, 85. [Google Scholar] [CrossRef]
- Khan, M.S.; Samanipour, M. Prešić Type Extension in Cone Metric Space. Int. J. Math. Anal. 2013, 7, 1795–1802. [Google Scholar] [CrossRef]
- Khan, M.S.; Shukla, S.; Kang, S.M. Weakly monotone Prešić type mappings in ordered cone metric spaces. Bull. Korean Math. Soc. 2015, 52, 881–893. [Google Scholar] [CrossRef]
- Kumar, D.R.; Pitchaimani, M. A generalization of set-valued Prešić-Reich type contractions in ultrametric spaces with applications. J. Fixed Point Theory Appl. 2017, 19, 1871–1887. [Google Scholar] [CrossRef]
- Latif, A.; Nazir, T.; Abbas, M. Fixed point results for multivalued Prešić type weakly contractive mappings. Mathematics 2019, 7, 601. [Google Scholar] [CrossRef]
- Luong, N.-V.; Thuan, N.-X. Some fixed point theorems of Prešić-Ćirić type. Acta Univ. Apulensis 2012, 30, 237–249. [Google Scholar]
- Malhotra, S.K.; Shukla, S.; Sen, R. Some Coincidence and Common Fixed Point theorems for Prešić-Reich type Mappings in Cone Metric Spaces. Rend. Semin. Mat. Pol. Torino 2012, 70, 247–260. [Google Scholar]
- Mohammadi, B.; De la Sen, M.; Parvanah, V.; Golkarmaneshd, F.; Aydi, H. On Jleli-Samet-Ćirić-Prešić Type Contractive Mappings. Filomat 2020, 34, 46854695. [Google Scholar] [CrossRef]
- Murthy, P.P. A Common Fixed Point Theorem of Prešić Type for Three Maps in Fuzzy Metric Space. Annu. Rev. Chaos Theory Bifurcations Dyn. Syst. 2013, 4, 30–36. [Google Scholar]
- Nazir, T.; Silvestrov, S. Fixed point results for Prešić type contractive mappings in b-metric spaces. arXiv 2023, arXiv:2307.13019. [Google Scholar]
- Omidvari, M. Best Proximity Point for Prešić Type Mappings on Metric Spaces. Commun. Nonlinear Anal. 2016, 1, 79–83. [Google Scholar]
- Ozturk, V. Some Results for Ćirić-Prešić Type Contractions in F-Metric Spaces. Symmetry 2023, 15, 1521. [Google Scholar] [CrossRef]
- Parcurar, M. A multi-step iterative method for approximating common fixed points of Prešić-Rus type operators on metric spaces. Stud. Univ.-Babes-Bolyai Math. 2010, 55, 149–162. [Google Scholar]
- Parcurar, M. Approximating common fixed points of Prešić-Kannan type operators by a multi-step iterative method. An. Stiintifice Ale Univ. Ovidius Constanta 2009, 17, 153–168. [Google Scholar]
- Parvaneh, V.; Golkarmanesh, F.; George, R. Fixed points of Wardowski-Ćirić-Prešić type contractive mappings in a partial rectangular b-metric space. J. Math. Anal. 2017, 8, 183–201. [Google Scholar]
- Rao, K.P.R.; Sadik, S.; Manro, S. Prešić Type Fixed Point Theorem for Four Maps in Metric Spaces. J. Math. 2016, 2016, 2121906. [Google Scholar] [CrossRef]
- Rao, K.P.R.; Ali, M.M.; Fisher, B. Some Prešić Type Generalizations of the Banach Contraction Principle. Math. Moravica 2011, 15, 41–47. [Google Scholar] [CrossRef]
- Rao, K.P.R.; Kishore, G.N.V.; Ali, M.M. A generalization of the Banach contraction principle of Prešić type three maps. Math. Sci. 2009, 3, 273–280. [Google Scholar]
- Rao, K.P.R.; Babu, A.S.; Ali, M.M. A Unique Common Fixed Point Theorem for Four Mappings Satisfying Prešić Type Condition in Fuzzy Metric Spaces. Adv. Anal. 2017, 2, 143–150. [Google Scholar] [CrossRef]
- Roy, K.; Saha, M. Some random fixed point theorems for Prešić type contractive mappings withseveral applications. Indian J. Math. 2020, 62, 371–405. [Google Scholar]
- Rus, I. An iterative method for the solution of the equation x = f(x,x,…,x). Rev. Anal. Numer. Theor. Approx. 1981, 10, 9–100. [Google Scholar]
- Shukla, S.; Shahzad, N. G-Prešić operators on metric spaces endowed with a graph and fixed point theorems. Fixed Point Theory Appl. 2014, 2014, 127. [Google Scholar] [CrossRef]
- Shukla, S.; Nashine, H.K. Cyclic-Prešić-Ćirić operators in metric-like spaces and fixed point theorems. Nonlinear Anal.-Model. Control 2016, 21, 261–273. [Google Scholar] [CrossRef]
- Shukla, S.; Sen, R.; Radenović, S. Set-valued Prešić type contraction in metric spaces. An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S) 2012, accepted. [Google Scholar] [CrossRef]
- Shukla, S.; Sen, R. Set-valued Prešić-Rech type mappings in metric spaces. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 2014, 108, 431–440. [Google Scholar] [CrossRef]
- Shukla, S.; Shahzad, N. Fixed points of α-admissible Prešić type operators. Nonlinear Anal. Model. Control 2016, 21, 424–436. [Google Scholar] [CrossRef]
- Shukla, S.; Radenović, S. Prešić-Maia type theorems in ordered metric spaces. Gulf J. Math. 2014, 2, 73–82. [Google Scholar] [CrossRef]
- Shukla, S. Set-valued Prešić-Chatterjea type contractions and fixed point theorems. Gazi Univ. J. Sci. 2016, 29, 473–478. [Google Scholar]
- Shukla, S. Set-valued Prešić-Reich type contractions in cone metric spaces and fixed point theorems. J. Nonlinear Anal. Optim. Theory Appl. 2015, 6, 103–114. [Google Scholar]
- Shukla, S. Set-valued Prešic-Ćirić type contraction in 0-complete partial metric spaces. Mat. Vesn. 2013, in press.
- Shukla, S.; Fisher, B. A generalization of Prešić type mappings in metric-like spaces. J. Oper. 2013, 2013, 368501. [Google Scholar] [CrossRef]
- Shukla, S.; Radenović, S. A generalization of Prešić type mappings in 0-complete ordered partial metric spaces. Chin. J. Math. 2013, 2013, 859531. [Google Scholar] [CrossRef]
- Shukla, S.; Radenović, S. Some generalizations of Prešić type mappings and applications. An. Stiin. Univ. Al. I. Guza Iasi Mat. 2014, accepted. [Google Scholar] [CrossRef]
- Shukla, S.; Radenović, S. Some Prešić-Boyd-Wong type results in ordered metric spaces. Int. J. Anal. Appl. 2014, 5, 154–166. [Google Scholar]
- Shukla, S.; Radojević, S.; Veljković, Z.A.; Radenović, S. Some coincidence and common fixed point theorems for ordered Prešić-Reich type contractions. J. Inequal. Appl. 2013, 2013, 520. [Google Scholar] [CrossRef]
- Shukla, S.; Mlaiki, N.; Aydi, H. On (G, G′)-Preišić-Ćirić Operators in Graphical Metric Spaces. Mathematics 2019, 7, 445. [Google Scholar] [CrossRef]
- Yesilkaya, S.S.; Aydýn, C. Several Theorems on Single and Set-Valued Prešić Type Mappings. Mathematics 2020, 8, 1616. [Google Scholar] [CrossRef]
- Menger, K. Statistical metrics. Proc. Nat. Acad. Sci. USA 1942, 28, 535–537. [Google Scholar] [CrossRef]
- Schweizer, B.; Sklar, A. Probabilistic Metric Spaces; North-Holland: New York, NY, USA, 1983. [Google Scholar]
- Hadžić, O.; Pap, E. Fixed Point Theory in Probabilistic Metric Spaces; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Fabiano, N.; Kadelburg, Z.; Mirkov, N.; Čavić, V.Š.; Radenović, S. On F-Contractions: A Survey. Contemp. Math. 2020, 3, 327–342. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Achtoun, Y.; Gardasević-Filipović, M.; Mitrović, S.; Radenović, S. On Prešić-Type Mappings: Survey. Symmetry 2024, 16, 415. https://doi.org/10.3390/sym16040415
Achtoun Y, Gardasević-Filipović M, Mitrović S, Radenović S. On Prešić-Type Mappings: Survey. Symmetry. 2024; 16(4):415. https://doi.org/10.3390/sym16040415
Chicago/Turabian StyleAchtoun, Youssef, Milanka Gardasević-Filipović, Slobodanka Mitrović, and Stojan Radenović. 2024. "On Prešić-Type Mappings: Survey" Symmetry 16, no. 4: 415. https://doi.org/10.3390/sym16040415
APA StyleAchtoun, Y., Gardasević-Filipović, M., Mitrović, S., & Radenović, S. (2024). On Prešić-Type Mappings: Survey. Symmetry, 16(4), 415. https://doi.org/10.3390/sym16040415