Ordered Patterns of (3+1)-Dimensional Hadronic Gauged Solitons in the Low-Energy Limit of Quantum Chromodynamics at a Finite Baryon Density, Their Magnetic Fields and Novel BPS Bounds
Abstract
:1. Introduction
2. Chiral Models
2.1. The -Model
2.2. Skyrme Model
2.3. Parametrization of the U Fields
3. The First Approach: The Generalized Hedgehog Ansatz, Baryonic Tubes and Layers
3.1. Hedgehog Ansatz
3.2. Finite-Density Condensates
3.2.1. Baryonic Tubes
3.2.2. Baryonic Layers
4. Minimal Coupling with Maxwell: Force-Free Plasma and Inhomogeneous Baryonic Condensates
The Skyrme–Maxwell Model
5. The Second Approach: Hamilton–Jacobi Equation and a Novel BPS Bound
5.1. Magnetized BPS Solitons
5.2. Hamilton–Jacobi Method
A Novel BPS Bound
6. Applications
6.1. Fermions Coupled to Skyrmions
6.2. Hamilton–Jacobi Equation with the Skyrme Term
7. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
QCD | Quantum Chromodynamics |
NLSM | Non-Linear -model |
G-NLSM | Gauged Non-Linear -model |
HA | Hedgehog Ansatz |
HJ | Hamilton–Jacobi (equation) |
Appendix A. Euler Representation and Exponential Representation of the SU(2) Skyrme Fields
Appendix B. Matrices and Some Commutation Relations
References
- Maniatis, M. The tree world. arXiv 2021, arXiv:2108.07266. [Google Scholar]
- Laine, M.; Vuorinen, A. Basics of thermal field theory. Lect. Notes Phys. 2016, 925, 1701-01554. [Google Scholar]
- Schroder, Y. Weak-coupling expansion of the hot QCD pressure. arXiv 2006, arXiv:hep-ph/0605057. [Google Scholar]
- Kogut, J.B.; Stephanov, M.A. The Phases of Quantum Chromodynamics: From Confinement to Extreme Environments; Cambridge University Press: Cambridge, UK, 2003; Volume 21. [Google Scholar]
- Bzdak, A.; Esumi, S.; Koch, V.; Liao, J.; Stephanov, M.; Xu, N. Mapping the phases of quantum chromodynamics with beam energy scan. Phys. Rep. 2020, 853, 1–87. [Google Scholar] [CrossRef]
- Nagata, K. Finite-density lattice QCD and sign problem: Current status and open problems. Prog. Part. Nucl. Phys. 2022, 127, 103991. [Google Scholar] [CrossRef]
- Astrakhantsev, N.Y.; Braguta, V.; Kolomoyets, N.; Kotov, A.Y.; Kuznedelev, D.; Nikolaev, A.; Roenko, A. Lattice Study of QCD Properties under Extreme Conditions: Temperature, Density, Rotation, and Magnetic Field. Phys. Part. Nucl. 2021, 52, 536–541. [Google Scholar] [CrossRef]
- Sakai, T.; Sugimoto, S. More on a holographic dual of QCD. Prog. Theor. Phys. 2005, 114, 1083–1118. [Google Scholar] [CrossRef]
- Hata, H.; Sakai, T.; Sugimoto, S.; Yamato, S. Baryons from instantons in holographic QCD. Prog. Theor. Phys. 2007, 117, 1157–1180. [Google Scholar] [CrossRef]
- Sutcliffe, P. Holographic skyrmions. Mod. Phys. Lett. B 2015, 29, 1540051. [Google Scholar] [CrossRef]
- López, J.A.; Dorso, C.O.; Frank, G. Properties of nuclear pastas. Front. Phys. 2021, 16, 24301. [Google Scholar] [CrossRef]
- Dorso, C.O.; Frank, G.A.; López, J.A. Phase transitions and symmetry energy in nuclear pasta. Nucl. Phys. A 2018, 978, 35–64. [Google Scholar] [CrossRef]
- Pelicer, M.; Antonelli, M.; Menezes, D.; Gulminelli, F. Anisotropic electron transport in the nuclear pasta phase. Mon. Not. R. Astron. Soc. 2023, 521, 743–759. [Google Scholar] [CrossRef]
- Nandi, R.; Schramm, S. Transport properties of the nuclear pasta phase with quantum molecular dynamics. Astrophys. J. 2018, 852, 135. [Google Scholar] [CrossRef]
- Yakovlev, D. Electron transport through nuclear pasta in magnetized neutron stars. Mon. Not. R. Astron. Soc. 2015, 453, 581–590. [Google Scholar] [CrossRef]
- Brauner, T.; Yamamoto, N. Chiral soliton lattice and charged pion condensation in strong magnetic fields. J. High Energy Phys. 2017, 2017, 132. [Google Scholar] [CrossRef]
- Kawaguchi, M.; Ma, Y.L.; Matsuzaki, S. Chiral soliton lattice effect on baryonic matter from a skyrmion crystal model. Phys. Rev. C 2019, 100, 025207. [Google Scholar] [CrossRef]
- Brauner, T.; Filios, G.; Kolešová, H. Chiral soliton lattice in QCD-like theories. J. High Energy Phys. 2019, 2019, 29. [Google Scholar] [CrossRef]
- Higaki, T.; Kamada, K.; Nishimura, K. Formation of a chiral soliton lattice. Phys. Rev. D 2022, 106, 096022. [Google Scholar] [CrossRef]
- Casalbuoni, R.; Nardulli, G. Inhomogeneous superconductivity in condensed matter and QCD. Rev. Mod. Phys. 2004, 76, 263. [Google Scholar] [CrossRef]
- Klebanov, I. Nuclear matter in the Skyrme model. Nucl. Phys. B 1985, 262, 133–143. [Google Scholar] [CrossRef]
- Kugler, M.; Shtrikman, S. Skyrmion crystals and their symmetries. Phys. Rev. D 1989, 40, 3421. [Google Scholar] [CrossRef]
- Castillejo, L.; Jones, P.; Jackson, A.D.; Verbaarschot, J.J.; Jackson, A. Dense skyrmion systems. Nucl. Phys. A 1989, 501, 801–812. [Google Scholar] [CrossRef]
- Adam, C.; Martín-Caro, A.G.; Huidobro, M.; Vázquez, R.; Wereszczynski, A. Dense matter equation of state and phase transitions from a generalized Skyrme model. Phys. Rev. D 2022, 105, 074019. [Google Scholar] [CrossRef]
- Adam, C.; Castelo, J.; Martín-Caro, A.G.; Huidobro, M.; Wereszczynski, A. Effective no-hair relations for spinning Boson Stars. arXiv 2023, arXiv:2305.06181. [Google Scholar] [CrossRef]
- Manton, N.; Sutcliffe, P. Topological Solitons; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar] [CrossRef]
- Shuryak, E. Nonperturbative Topological Phenomena in QCD and Related Theories; Springer: Berlin/Heidelberg, Germany, 2021; Volume 977. [Google Scholar]
- Shifman, M. Advanced Topics in Quantum Field Theory: A Lecture Course; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Dunne, G.V.; Thies, M. Time-Dependent Hartree-Fock Solution of Gross-Neveu Models: Twisted-Kink Constituents of Baryons and Breathers. Phys. Rev. Lett. 2013, 111, 121602. [Google Scholar] [CrossRef] [PubMed]
- Başar, G.; Dunne, G.V.; Thies, M. Inhomogeneous condensates in the thermodynamics of the chiral NJL 2 model. Phys. Rev. D 2009, 79, 105012. [Google Scholar] [CrossRef]
- Schnetz, O.; Thies, M.; Urlichs, K. Full phase diagram of the massive Gross–Neveu model. Ann. Phys. 2006, 321, 2604–2637. [Google Scholar] [CrossRef]
- Thies, M. Chiral spiral in the presence of chiral imbalance. Phys. Rev. D 2018, 98, 096019. [Google Scholar] [CrossRef]
- Thies, M. Duality study of the chiral Heisenberg-Gross-Neveu model in 1+1 dimensions. Phys. Rev. D 2020, 102, 096006. [Google Scholar] [CrossRef]
- Thies, M. First-order phase boundaries of the massive (1+1)-dimensional Nambu–Jona-Lasinio model with isospin. Phys. Rev. D 2020, 101, 074013. [Google Scholar] [CrossRef]
- Thies, M. Phase structure of the (1+1)-dimensional Nambu–Jona-Lasinio model with isospin. Phys. Rev. D 2020, 101, 014010. [Google Scholar] [CrossRef]
- Thies, M. Gross-Neveu model with O (2) L× O (2) R chiral symmetry: Duality with Zakharov-Mikhailov model and large N solution. Phys. Rev. D 2023, 107, 076024. [Google Scholar] [CrossRef]
- Adhikari, P.; Andersen, J.O.; Kneschke, P. Inhomogeneous chiral condensate in the quark-meson model. Phys. Rev. D 2017, 96, 016013. [Google Scholar] [CrossRef]
- Adhikari, P.; Andersen, J.O.; Kneschke, P. Erratum: Inhomogeneous chiral condensate in the quark-meson model [Phys. Rev. D 96, 016013 (2017)]. Phys. Rev. D 2018, 98, 099902. [Google Scholar] [CrossRef]
- Ravenhall, D.; Pethick, C.; Wilson, J. Structure of matter below nuclear saturation density. Phys. Rev. Lett. 1983, 50, 2066. [Google Scholar] [CrossRef]
- Hashimoto, M.A.; Seki, H.; Yamada, M. Shape of nuclei in the crust of neutron star. Prog. Theor. Phys. 1984, 71, 320–326. [Google Scholar] [CrossRef]
- Horowitz, C.; Berry, D.; Briggs, C.; Caplan, M.; Cumming, A.; Schneider, A. Disordered nuclear pasta, magnetic field decay, and crust cooling in neutron stars. Phys. Rev. Lett. 2015, 114, 031102. [Google Scholar] [CrossRef] [PubMed]
- Schneider, A.S.; Caplan, M.E.; Berry, D.K.; Horowitz, C.J. Domains and defects in nuclear pasta. Phys. Rev. C 2018, 98, 055801. [Google Scholar] [CrossRef]
- Caplan, M.E.; Schneider, A.; Horowitz, C.J. Elasticity of nuclear pasta. Phys. Rev. Lett. 2018, 121, 132701. [Google Scholar] [CrossRef]
- Dorso, C.O.; Strachan, A.; Frank, G.A. The nucleonic thermal conductivity of “pastas” in neutron star matter. Nucl. Phys. A 2020, 1002, 122004. [Google Scholar] [CrossRef]
- Kaspi, V.M.; Beloborodov, A.M. Magnetars. Annu. Rev. Astron. Astrophys. 2017, 55, 261–301. [Google Scholar] [CrossRef]
- Kharzeev, D.E.; McLerran, L.D.; Warringa, H.J. The effects of topological charge change in heavy ion collisions: “Event by event P and CP violation”. Nucl. Phys. A 2008, 803, 227–253. [Google Scholar] [CrossRef]
- d’Enterria, D.; Drewes, M.; Giammanco, A.; Hajer, J.; Bratkovskaya, E.; Bruce, R.; Burmasov, N.; Dyndal, M.; Gould, O.; Grabowska-Bold, I.; et al. Opportunities for new physics searches with heavy ions at colliders. J. Phys. G Nucl. Part. Phys. 2023, 50, 050501. [Google Scholar] [CrossRef]
- Canfora, F. Ordered Arrays of Baryonic Tubes in the Skyrme Model in (3+1) Dimensions at Finite Density. Eur. Phys. J. C 2018, 78, 929. [Google Scholar] [CrossRef]
- Canfora, F.; Lagos, M.; Pais, P.; Vera, A. Exact mapping from the (3+1)-dimensional Skyrme model to the (1+1)-dimensional sine-Gordon theory and some applications. Phys. Rev. D 2023, 108, 114027. [Google Scholar] [CrossRef]
- Canfora, F. Magnetized Baryonic Layer and a Novel BPS Bound in the Gauged-Non-Linear-Sigma-Model-Maxwell Theory in (3+1)-Dimensions through Hamilton–Jacobi Equation. J. High Energy Phys. 2023, 2023, 7. [Google Scholar] [CrossRef]
- Balachandran, A.P.; Marmo, G.; Skagerstam, B.S.; Stern, A. Classical Topology and Quantum States; World Scientific: Singapore, 1991. [Google Scholar] [CrossRef]
- Derrick, G. Comments on nonlinear wave equations as models for elementary particles. J. Math. Phys. 1964, 5, 1252–1254. [Google Scholar] [CrossRef]
- Skyrme, T.H.R. A unified field theory of mesons and baryons. Nucl. Phys. 1962, 31, 556–569. [Google Scholar] [CrossRef]
- ’t Hooft, G. A Planar Diagram Theory for Strong Interactions. Nucl. Phys. B 1974, 72, 461. [Google Scholar] [CrossRef]
- ’t Hooft, G. A two-dimensional model for mesons. Nucl. Phys. B 1974, 75, 461–470. [Google Scholar] [CrossRef]
- ’t Hooft, G. A planar diagram theory for strong interactions. In The Large N Expansion in Quantum Field Theory and Statistical Physics: From Spin Systems to 2-Dimensional Gravity; World Scientific: Singapore, 1993; pp. 80–92. [Google Scholar]
- Veneziano, G. Some aspects of a unified approach to gauge, dual and Gribov theories. Nucl. Phys. B 1976, 117, 519–545. [Google Scholar] [CrossRef]
- Witten, E. Baryons in the 1N expansion. Nucl. Phys. B 1979, 160, 57–115. [Google Scholar] [CrossRef]
- Skyrme, T.H.R. A non-linear field theory. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1961, 260, 127–138. [Google Scholar]
- Callan, C.G.; Witten, E. Monopole Catalysis of Skyrmion Decay. Nucl. Phys. B 1984, 239, 161–176. [Google Scholar] [CrossRef]
- Witten, E. Current algebra, baryons, and quark confinement. Nucl. Phys. B 1983, 223, 433–444. [Google Scholar] [CrossRef]
- Balachandran, A.; Barducci, A.; Lizzi, F.; Rodgers, V.; Stern, A. Doubly strange dibaryon in the chiral model. Phys. Rev. Lett. 1984, 52, 887. [Google Scholar] [CrossRef]
- Adkins, G.S.; Nappi, C.R.; Witten, E. Static properties of nucleons in the Skyrme model. Nucl. Phys. B 1983, 228, 552–566. [Google Scholar] [CrossRef]
- Guadagnini, E. Baryons as solitons and mass formulae. Nucl. Phys. B 1984, 236, 35–47. [Google Scholar] [CrossRef]
- Manton, N. Is the B = 2 Skyrmion axially symmetric? Phys. Lett. B 1987, 192, 177–179. [Google Scholar] [CrossRef]
- Goldhaber, A.S.; Manton, N. Maximal symmetry of the Skyrme crystal. Phys. Lett. B 1987, 198, 231–234. [Google Scholar] [CrossRef]
- Balachandran, A.; Nair, V.P.; Rajeev, S.; Stern, A. Soliton states in the quantum-chromodynamic effective Lagrangian. Phys. Rev. D 1983, 27, 1153. [Google Scholar] [CrossRef]
- Shnir, Y.M. Magnetic Monopoles; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Shnir, Y.M. Topological and Non-Topological Solitons in Scalar Field Theories; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Prasad, M.; Sommerfield, C.M. Exact classical solution for the’t Hooft monopole and the Julia-Zee dyon. Phys. Rev. Lett. 1975, 35, 760. [Google Scholar] [CrossRef]
- Bogomolny, E. The stability of classical solutions. Sov. J. Nucl. Phys. 1976, 24, 861–870. [Google Scholar]
- Balachandran, A.; Lizzi, F.; Rodgers, V.; Stern, A. Dibaryons as chiral solitons. Nucl. Phys. B 1985, 256, 525–556. [Google Scholar] [CrossRef]
- Kopeliovich, V.; Stern, B.; Schwesinger, B. SU (3)-Skyrmion with B = 2 and Large strangeness content. Pis’ Ma V Zhurnal Ehksperimental’noj I Teor. Fiz. 1995, 62, 177–181. [Google Scholar]
- Din, A.M.; Zakrzewski, W.J. General classical solutions in the CPn-1 model. Nucl. Phys. B 1980, 174, 397–406. [Google Scholar] [CrossRef]
- Ioannidou, T.; Piette, B.; Zakrzewski, W. Spherically symmetric solutions of the SU (N) Skyrme models. J. Math. Phys. 1999, 40, 6223–6233. [Google Scholar] [CrossRef]
- Brihaye, Y.; Hartmann, B.; Ioannidou, T.; Zakrzewski, W. Harmonic map analysis of SU (N) gravitating Skyrmions. Phys. Rev. D 2004, 69, 124035. [Google Scholar] [CrossRef]
- Canfora, F.; Carignano, S.; Lagos, M.; Mannarelli, M.; Vera, A. Pion Crystals Hosting Topologically Stable Baryons. Phys. Rev. D 2021, 103, 076003. [Google Scholar] [CrossRef]
- Canfora, F.; Lagos, M.; Oh, S.H.; Oliva, J.; Vera, A. Analytic (3+1)-Dimensional Gauged Skyrmions, Heun, and Whittaker-Hill Equations and Resurgence. Phys. Rev. D 2018, 98, 085003. [Google Scholar] [CrossRef]
- Mannarelli, M.; Canfora, F.; Carignano, S.; Lagos, M.; Vera, A. Inhomogeneous pion condensed phase hosting topologically stable baryons. In Proceedings of the EPJ Web of Conferences, Daejeon, Republic of Korea, 22–26 April 2022; EDP Sciences: Les Ulis, France, 2022; Volume 258, p. 07003. [Google Scholar]
- Gell-Mann, M.; Lévy, M.M. The Axial Vector Current in Beta Decay. Il Nuovo C. 1960, 16, 705–726. [Google Scholar] [CrossRef]
- Itzykson, C.; Zuber, J.B. Quantum Field Theory; Courier Corporation: Chelmsford, MA, USA, 2006; Chapter 11-4. [Google Scholar]
- Goldstone, J.; Jaffe, R.L. Baryon number in chiral bag models. Phys. Rev. Lett. 1983, 51, 1518. [Google Scholar] [CrossRef]
- Niemi, A.J.; Semenoff, G.W. Fermion number fractionization in quantum field theory. Phys. Rep. 1986, 135, 99–193. [Google Scholar] [CrossRef]
- Hosaka, A.; Toki, H. Chiral bag model for the nucleon. Phys. Rep. 1996, 277, 65–188. [Google Scholar] [CrossRef]
- Hiller, J.R.; Jordan, T.F. Solutions of the Dirac Equation for Fermions in Skyrme Fields. Phys. Rev. D 1986, 34, 1176–1183. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Hiller, J.R. Eigenenergies of Fermions Bound in Skyrme Fields. Phys. Rev. D 1989, 40, 1329–1335. [Google Scholar] [CrossRef] [PubMed]
- Shnir, Y.M. Collective Coordinates of the Skyrme Model Coupled with Fermions. Phys. Scr. 2003, 67, 361–365. [Google Scholar] [CrossRef]
- Kahana, S.; Ripka, G. Baryon Density of Quarks Coupled to a Chiral Field. Nucl. Phys. A 1984, 429, 462–476. [Google Scholar] [CrossRef]
- Banerjee, B.; Glendenning, N.K.; Soni, V. Soliton Matter and the Onset of Color Conductivity. Phys. Lett. B 1985, 155, 213–216. [Google Scholar] [CrossRef]
- Glendenning, N.K.; Banerjee, B. Soliton Matter as a Model of Dense Nuclear Matter. Phys. Rev. C 1986, 34, 1072–1080. [Google Scholar] [CrossRef]
- Rho, M.; Goldhaber, A.S.; Brown, G.E. Topological Soliton Bag Model for Baryons. Phys. Rev. Lett. 1983, 51, 747–750. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canfora, F.; Delgado, E.; Urrutia, L. Ordered Patterns of (3+1)-Dimensional Hadronic Gauged Solitons in the Low-Energy Limit of Quantum Chromodynamics at a Finite Baryon Density, Their Magnetic Fields and Novel BPS Bounds. Symmetry 2024, 16, 518. https://doi.org/10.3390/sym16050518
Canfora F, Delgado E, Urrutia L. Ordered Patterns of (3+1)-Dimensional Hadronic Gauged Solitons in the Low-Energy Limit of Quantum Chromodynamics at a Finite Baryon Density, Their Magnetic Fields and Novel BPS Bounds. Symmetry. 2024; 16(5):518. https://doi.org/10.3390/sym16050518
Chicago/Turabian StyleCanfora, Fabrizio, Evangelo Delgado, and Luis Urrutia. 2024. "Ordered Patterns of (3+1)-Dimensional Hadronic Gauged Solitons in the Low-Energy Limit of Quantum Chromodynamics at a Finite Baryon Density, Their Magnetic Fields and Novel BPS Bounds" Symmetry 16, no. 5: 518. https://doi.org/10.3390/sym16050518
APA StyleCanfora, F., Delgado, E., & Urrutia, L. (2024). Ordered Patterns of (3+1)-Dimensional Hadronic Gauged Solitons in the Low-Energy Limit of Quantum Chromodynamics at a Finite Baryon Density, Their Magnetic Fields and Novel BPS Bounds. Symmetry, 16(5), 518. https://doi.org/10.3390/sym16050518