Comparative Analysis of Bilinear Time Series Models with Time-Varying and Symmetric GARCH Coefficients: Estimation and Simulation
Abstract
:1. Introduction
2. Preliminaries
2.1. Stationarity Study
- 1.
- For all t, ,
- 2.
- ,
2.2. Klimko–Nilsen Theorem and Estimation Approach
- (a)
- , .
- (b)
- , .
- (c)
- converges almost surely to the matrix which is strictly positive.
- (d)
- , where , , where represents the intermediate value between ω and .
- (e)
- as .
3. Least Squares Approach
3.1. Algorithm
3.2. Derivation Techniques
3.3. Derivatives Calculation
4. Simulation and Graphic Illustrations
4.1. Asymmetric and Symmetric GARCH Models
4.2. Graphic Illustration
5. Concluding Comments
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Granger, C.W.J.; Andersen, A.P. An introduction to bilinear time series models. Angew. Stat. Okonom. 1978, 8, 7–94. [Google Scholar]
- Rao, T.S.; Gabr, M.M. An Introduction to Bispectral Analysis and Bilinear Time Series Models; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 24. [Google Scholar]
- Pan, J.; Li, G.; Xie, Z. Stationary solution and parametric estimation for Bilinear model driven by ARCH noises. Sci. China Ser. A Math. 2002, 45, 1523–1537. [Google Scholar]
- Terdik, G. Bilinear Stochastic Models and Related Problems of Nonlinear Time Series Analysis: A Frequency Domain Approach; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1999; Volume 142. [Google Scholar]
- Tong, H. Non-Linear Time Series: A Dynamical System Approach; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Bibi, A.; Oyet, A.J. Estimation of some bilinear time series models with time varying coefficients. Stoch. Anal. Appl. 2004, 22, 355–376. [Google Scholar] [CrossRef]
- Klimko, L.A.; Nelson, P.I. On conditional least squares estimation for stochastic processes. Ann. Stat. 1978, 6, 629–642. [Google Scholar] [CrossRef]
- Weiss, A.A. ARCH and bilinear time series models: Comparison and combination. J. Bus. Econ. 1986, 4, 59–70. [Google Scholar] [CrossRef]
- Pantula, S.G. Estimation of autoregressive models with ARCH errors. Sankhyā Indian J. Stat. Ser. B 1988, 50, 119–138. [Google Scholar]
- Lubrano, M. Smooth Transition Garch Models: A Bayesian Perspective. Louvain Econ. Rev. 2001, 67, 257–287. [Google Scholar] [CrossRef]
- Patton, A.J.; Sheppard, K. Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility. Rev. Econ. Stat. 2015, 97, 683–697. [Google Scholar] [CrossRef]
- Fiorucci, J.A.; Silva, G.N.; Barboza, F. Reaction trend system with GARCH quantiles as action points. Expert Syst. Appl. 2022, 198, 116750. [Google Scholar] [CrossRef]
- Hammad, M.A.; Alsharif, S.; Shmasnah, A.; Khalil, R. Fractional Bessel differential equation and fractional Bessel functions. Ital. J. Pure Appl. Math. 2022, 47, 521–531. [Google Scholar]
- Hammad, M.A.; Rasool, S.; Alotaibi, B.M.; Alotiby, M.; Tiofack, C.L.; Alrowaily, A.W.; El-Tantawy, S.A. On the modified versions of G’G-expansion technique for analyzing the fractional coupled Higgs system. AIP Adv. 2023, 13, 105131. [Google Scholar] [CrossRef]
- Gherghina, Ș.C.; Armeanu, D.Ș.; Joldeș, C.C. COVID-19 pandemic and Romanian stock market volatility: A GARCH approach. J. Risk Financ. Manag. 2021, 14, 341. [Google Scholar] [CrossRef]
- Zraiqat, A.; Al-Hwawcha, L.K. On exact solutions of second order nonlinear ordinary differential equations. Appl. Math. 2015, 6, 953–957. [Google Scholar] [CrossRef]
- Khan, M.S.; Khan, K.I.; Mahmood, S.; Sheeraz, M. Symmetric and asymmetric volatility clustering via GARCH family models: An evidence from religion dominant countries. Paradigms 2019, 13, 20–25. [Google Scholar]
- Warren, R.; Kaseke, F. Modeling South African Stock Market Volatility Using Univariate Symmetric and Asymmetric GARCH Models. Indian J. Financ. Bank. 2021, 6, 1–16. [Google Scholar]
- Carol, A.; Lazar, E.; Stanescu, S. Analytic moments for GJR-GARCH (1, 1) processes. Int. J. Forecast. 2021, 37, 105–124. [Google Scholar]
- Wang, Z.; Xing, T.; Wang, X. Economic uncertainty and stock market asymmetric volatility: Analysis based on the asymmetric GARCH-MIDAS model. Int. J. Emerg. Mark. 2024. [Google Scholar] [CrossRef]
- Xiong, L.; Zhu, F. Robust estimation for the one-parameter exponential family integer-valued GARCH (1,1) models based on a modified Tukey’s biweight function. Comput. Stat. 2024, 39, 495–522. [Google Scholar] [CrossRef]
- Zuo, H.; Guo, H. Structural nonlinear damage identification based on the information distance of GNPAX/GARCH model and its experimental study. Struct. Health Monit. 2024, 23, 991–1012. [Google Scholar] [CrossRef]
- Zhang, R. Asymmetric beta-binomial GARCH models for time series with bounded support. Appl. Math. Comput. 2024, 470, 128556. [Google Scholar] [CrossRef]
- Liu, H.; Yang, P.; Song, H.; Wu, D.C. Global and domestic economic policy uncertainties and tourism stock market: Evidence from China. Tour. Econ. 2024, 30, 567–591. [Google Scholar] [CrossRef]
- Amirshahi, B.; Lahmiri, S. Hybrid deep learning and GARCH-family models for forecasting volatility of cryptocurrencies. Mach. Learn. Appl. 2023, 12, 100465. [Google Scholar] [CrossRef]
N | Real Values | Estimates | |
---|---|---|---|
250 | 300 | (0.0097, 0.3230, 0.3706) | |
600 | (0.0182, 0.2872, 0.3797) | ||
900 | (0.02, 0.25, 0.45) | (0.0129, 0.2879, 0.3802) | |
500 | 300 | (0.0166, 0.2704, 0.4119) | |
600 | (0.0225, 0.2787, 0.4152) | ||
900 | (0.0220, 0.2795, 0.4456) |
N | Real Value | Estimates | |
---|---|---|---|
250 | 300 | , , | |
600 | , , | ||
900 | , , | ||
500 | 300 | , , | |
600 | , , | ||
900 | , , |
N | ||
---|---|---|
250 | 300 | |
500 | 600 |
True Values: ( | ||
---|---|---|
N | ||
300 | 250 | |
⋮ | ⋮ | ⋮ |
600 | 500 |
N | Using Symmetric GARCH | Using Asymmetric GARCH | ||
---|---|---|---|---|
100 | 120 | 0.09 | 0.0879 | 0.1672 |
100 | 240 | 0.09 | 0.0902 | 0.1677 |
100 | 300 | 0.09 | 0.0898 | 0.1399 |
300 | 120 | 0.2 | 0.1944 | 0.1944 |
300 | 240 | 0.2 | 0.1967 | 0.1967 |
300 | 300 | 0.2 | 0.2013 | 0.2013 |
900 | 120 | 0.7 | 0.5972 | 0.5972 |
900 | 240 | 0.7 | 0.6897 | 0.6897 |
900 | 300 | 0.7 | 0.7011 | 0.7011 |
1200 | 1200 | 0.9 | 0.9002 | 0.9038 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu Hammad, M.; Alkhateeb, R.; Laiche, N.; Ouannas, A.; Alshorm, S. Comparative Analysis of Bilinear Time Series Models with Time-Varying and Symmetric GARCH Coefficients: Estimation and Simulation. Symmetry 2024, 16, 581. https://doi.org/10.3390/sym16050581
Abu Hammad M, Alkhateeb R, Laiche N, Ouannas A, Alshorm S. Comparative Analysis of Bilinear Time Series Models with Time-Varying and Symmetric GARCH Coefficients: Estimation and Simulation. Symmetry. 2024; 16(5):581. https://doi.org/10.3390/sym16050581
Chicago/Turabian StyleAbu Hammad, Ma’mon, Rami Alkhateeb, Nabil Laiche, Adel Ouannas, and Shameseddin Alshorm. 2024. "Comparative Analysis of Bilinear Time Series Models with Time-Varying and Symmetric GARCH Coefficients: Estimation and Simulation" Symmetry 16, no. 5: 581. https://doi.org/10.3390/sym16050581
APA StyleAbu Hammad, M., Alkhateeb, R., Laiche, N., Ouannas, A., & Alshorm, S. (2024). Comparative Analysis of Bilinear Time Series Models with Time-Varying and Symmetric GARCH Coefficients: Estimation and Simulation. Symmetry, 16(5), 581. https://doi.org/10.3390/sym16050581