Refinement of a Lyapunov-Type Inequality for a Fractional Differential Equation
Abstract
:1. Introduction
2. Preliminary and Lemmas
- (i)
- If and , then
- (ii)
- If and , then
- (iii)
- If and , then
- (iv)
- If and , then
2.1. Properties of the Green Function
2.2. A Study on Linear Functions
- (1)
- Assume that , then
- (2)
- Assume that , then
- (1)
- If , then ;
- (2)
- If , then ;
- (3)
- If , then ;
- (4)
- If , then .
3. Main Results
- (1)
- If then
- (2)
- If , then
- (3)
- If , then
- (1)
- If , then
- (2)
- If , then
- (3)
- If , then
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liapunov, A.M. Probleme général de la stabilité du mouvement, (French Translation of a Russian paper dated 1893). Ann. Fac. Sci. Univ. Toulouse 1907, 2, 27–247. [Google Scholar]
- Tiryaki, A. Recent developments of Lyapunov-type inequalities. Adv. Dyn. Syst. Appl. 2010, 5, 231–248. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Ntouyas, S.K.; Ahmad, B.; Horikis, T.P. Recent developments of Lyapunov-type inequalities for fractional differential equations. Differ. Integral Inequalities 2019, 151, 619–686. [Google Scholar]
- Ntouyas, S.K.; Ahmad, B. Lyapunov-type inequalities for fractional differential equations: A survey. Surv. Math. Appl. 2021, 16, 43–93. [Google Scholar]
- Ntouyas, S.K.; Ahmad, B.; Tariboon, J. A Survey on Recent Results on Lyapunov-Typ eInequalities for Fractional Differential Equations. Fractal Fract. 2022, 6, 273. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. Lyapunov-type inequalities for a fractional differential equation with mixed boundary conditions. Math. Inequal. Appl. 2015, 18, 443–451. [Google Scholar] [CrossRef]
- Jleli, M.; Ragoub, L.; Samet, B. Lyapunov-type inequality for a fractional differential equation under a Robin boundary conditions. J. Funct. Spaces 2015, 2015, 468536. [Google Scholar] [CrossRef]
- Rong, J.; Bai, C. Lyapunov-type inequality for a fractional differential equation with fractional boundary conditions. Adv. Differ. Equ. 2015, 2015, 82. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, S.; Xia, C. A Lyapunov-type inequalities for a fractional differential equation under Sturm–Liouville boundary conditions. Math. Inequal. Appl. 2017, 20, 139–148. [Google Scholar] [CrossRef]
- O’Regan, D.; Samet, B. Lyapunov-type inequalities for a class of fractional differential equations. J. Inequal. Appl. 2015, 2015, 247. [Google Scholar] [CrossRef]
- Cabrera, I.; Sadarangani, K.; Samet, B. Hartman–Wintner-type inequalities for a class of nonlocal fractional boundary value problems. Math. Methods Appl. Sci. 2017, 40, 129–136. [Google Scholar] [CrossRef]
- Lupinska, B.; Schmeidel, E. Analysis of some Katugampola fractional differential equations with fractional boundary conditions. Math. Biosci. Eng. 2021, 18, 7269–7279. [Google Scholar] [CrossRef] [PubMed]
- Jarad, F.; Adjari, Y.; Abdeljawad, T.; Mallak, S.; Alrabaiah, H. Lyapunov type inequality in the frame of generalized Caputo derivative. Discret. Contin. Dyn. Syst. Ser. S 2021, 14, 2335–2355. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, J.; Ni, J. New Lyapunov-type inequalities for fractional multi-point boundary value problems involving Hilfer–Katugampola fractional derivative. AIMS Math. 2022, 7, 1074–1094. [Google Scholar] [CrossRef]
- Cabada, A.; Khaldi, R. Lyapunov-type inequality for higher order left and right fractional p-Laplacian problems. Proyecciones 2021, 40, 1031–1040. [Google Scholar] [CrossRef]
- Li, G.; Zhang, Y.; Guan, Y.; Li, W. Stability analysis of multi-point boundary conditions for fractional differential equation with non-instantaneous integral impulse. Math. Biosci. Eng. 2023, 20, 7020–7041. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Rao, Y.; Shi, K.; Wen, H. Global synchronization of fractional-order multi-delay coupled neural networks with multi-link complicated structures via hybrid impulsive control. Mathematics 2023, 11, 3051. [Google Scholar] [CrossRef]
- Fan, H.; Tang, J.; Shi, K.; Zhao, Y. Hybrid impulsive feedback control for drive-response synchronization of fractional-order multi-link Memristive neural networks with multi-delays. Fractal Fract. 2023, 7, 495. [Google Scholar] [CrossRef]
- Ma, D.; Yang, Z. Lyapunov-type inequality and solution for a fractional differential equation. J. Inequalities Appl. 2020, 2020, 181. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, H.; Li, Z.; Zhang, Y.; Liu, X. Refinement of a Lyapunov-Type Inequality for a Fractional Differential Equation. Symmetry 2024, 16, 941. https://doi.org/10.3390/sym16080941
Xiao H, Li Z, Zhang Y, Liu X. Refinement of a Lyapunov-Type Inequality for a Fractional Differential Equation. Symmetry. 2024; 16(8):941. https://doi.org/10.3390/sym16080941
Chicago/Turabian StyleXiao, Hongying, Zhaofeng Li, Yuanyuan Zhang, and Xiaoyou Liu. 2024. "Refinement of a Lyapunov-Type Inequality for a Fractional Differential Equation" Symmetry 16, no. 8: 941. https://doi.org/10.3390/sym16080941
APA StyleXiao, H., Li, Z., Zhang, Y., & Liu, X. (2024). Refinement of a Lyapunov-Type Inequality for a Fractional Differential Equation. Symmetry, 16(8), 941. https://doi.org/10.3390/sym16080941