Timelike Surface Couple with Bertrand Couple as Joint Geodesic Curves in Minkowski 3-Space
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
- (1)
- If we set
- (2)
- If we set
Ruled with Joint Geodesic
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spivak, M.A. Comprehensive Introduction to Differential Geometry, 2nd ed.; Publish or Perish: Houston, TX, USA, 1979. [Google Scholar]
- Do Carmo, M.P. Differential Geometry of Curves and Surfaces; Prentice-Hall: Englewood Cliffs, NJ, USA, 1976. [Google Scholar]
- O’Neil, B. Semi-Riemannian Geometry, with Applications to Relativity; Academic Press: New York, NY, USA, 1983. [Google Scholar]
- Walfare, J. Curves and Surfaces in Minkowski Space. Ph.D. Thesis, Faculty of Science, K.U. Leuven, Leuven, Belgium, 1995. [Google Scholar]
- Ravani, B.; Ku, T.S. Bertrand offsets of ruled and developable surfaces. Comput.-Aided Des. 1991, 23, 145–152. [Google Scholar] [CrossRef]
- Sprott, K.S.; Ravani, B. Cylindrical milling of ruled surfaces. Int. J. Adv. Manuf. Technol. 2008, 38, 649–656. [Google Scholar] [CrossRef]
- Brond, R.; Jeulin, D.; Gateau, P.; Jarrin, J.; Serpe, G. Estimation of the transport properties of polymer composites by geodesic propagation. J. Microsc. 1994, 176, 167–177. [Google Scholar] [CrossRef]
- Bryson, S. Virtual spacetime: An environment for the visualization of curved spacetimes via geodesic flows. In Proceedings of the Proceedings Visualization ’92, Boston, MA, USA, 19–23 October 1992; pp. 291–298. [Google Scholar]
- Haw, R.J.; Munchmeyer, R.C. Geodesic curves on patched polynomial surfaces. Comput. Graph. Forum 1983, 2, 225–232. [Google Scholar] [CrossRef]
- Agarwal, K.; Har-Peled, S.; Sharir, M.; Varadarajan, K.R. Approximating shortest paths on a convex polytope in three dimensions. J. ACM 1997, 44, 567–584. [Google Scholar] [CrossRef]
- Har-Peled, S. Approximate shortest-path and geodesic diameter on convex polytopes in three dimensions. Discret. Comput. Geom. 1999, 21, 217–231. [Google Scholar] [CrossRef]
- Haw, R.J. An application of geodesic curves to sail design. Comput. Graph. Forum 1985, 4, 137–139. [Google Scholar] [CrossRef]
- Goldenberg, R.; Kimmel, R.; Rivlin, E.; Rudzsky, M. Fast geodesic active contours. IEEE Trans. Image Process 2001, 10, 1467–1475. [Google Scholar] [CrossRef] [PubMed]
- Novotni, M.; Klein, R. Computing geodesic paths on triangular meshes. In Proceedings of the 17th Brazilian Symposium on Computer Graphics and Image Processing, Curitiba, Brazil, 20 October 2004; pp. 341–347. [Google Scholar]
- Wang, G.J.; Tang, K.; Tai, C.L. Parametric representation of a surface bundle with a common spatial geodesic. Comput.-Aided Des. 2004, 36, 447–459. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Wang, G.J. A new method for designing a developable surface utilizing the surface bundle through a given curve. Prog. Nat. Sci. 2008, 18, 105–110. [Google Scholar] [CrossRef]
- Li, C.Y.; Wang, R.H.; Zhu, C.G. An approach for designing a developable surface through a given line of curvature. Comput.-Aided Des. 2013, 45, 621–627. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, G.J. Designing developable surface bundle through given curve as its common asymptotic curve. J. Zhejiang Univ. 2013, 47, 1246–1252. [Google Scholar]
- Atalay, G.S.; Kasap, E. Surfaces family with common Smarandache geodesic curve. J. Sci. Arts 2017, 4, 651–664. [Google Scholar]
- Abdel-Baky, R.A.; Alluhaib, N. Surfaces family with a common geodesic curve in Euclidean 3-Space . Int. J. Math. Anal. 2019, 13, 433–447. [Google Scholar] [CrossRef]
- Abdel-Baky, R.A. Timelike surfaces with a common asymptotic curve in Minkowski 3-Space . Riv. Mat. Univ. Parma 2017, 8, 379–395. [Google Scholar]
- Ergün, E.; Bayram, E.; Kasap, E. Surface bundle with a common line of curvature in Minkowski 3-space. Acta Math. Sin. 2014, 30, 2103–2118. [Google Scholar] [CrossRef]
- Alluhaib, N.; Abdel-Baky, R.A. A surface family with a common asymptotic null curve in Minkowski 3-space . Math. Probl. Eng. 2021, 2021, 3901527. [Google Scholar]
- Atalay, G.S.; Kasap, E. Surfaces family with common null asymptotic. Appl. Math. Comput. 2015, 260, 135–139. [Google Scholar] [CrossRef]
- Atalay, G.S. Surfaces family with a common Mannheim geodesic curve. J. Appl. Math. Comput. 2018, 2, 155–165. [Google Scholar]
- Jiang, X.; Jiang, P.; Meng, J.; Wang, K. Surface bundle couple interpolating Bertrand couple as common asymptotic curves in Galilean space . Int. J. Geom. Methods Mod. Phys. 2021, 18, 2150114. [Google Scholar] [CrossRef]
- Almoneef, A.A.; Abdel-Baky, R.A. Surface family couple with Bertrand couple as common geodesic curves in Galilean 3-space . Mathematics 2023, 11, 2391. [Google Scholar] [CrossRef]
- Matsuda, H.; Yorozu, S. Notes on Bertrand curves. Yokohama Math. J. 2003, 50, 41–58. [Google Scholar]
- Almoneef, A.A.; Abdel-Baky, R.A. Surface family couple with Bertrand couple as mutual geodesic curves in Euclidean 3-space. AIMS Math. 2023, 8, 20546–20560. [Google Scholar] [CrossRef]
- Al-Jedani, A.; Abdel-Baky, R.A. A surface family with a mutual geodesic curve in Galilean 3-space . Mathematics 2023, 11, 2971. [Google Scholar] [CrossRef]
- Papaioannou, S.G.; Kiritsis, D. An application of Bertrand curves and surface to CAD/CAM. Comput.-Aided Des. 1985, 17, 348–352. [Google Scholar] [CrossRef]
- Görgülü, E.; Ozdamar, E. A generalizations of the Bertrand curves as general inclined curves in E n. Commun. Fac. Sci. Uni. Ankara. Ser. A1 1986, 35, 53–60. [Google Scholar] [CrossRef]
- Izumiya, S.; Takeuchi, N. Generic properties of helices and Bertrand curves. J. Geom. 2002, 74, 97–109. [Google Scholar] [CrossRef]
- Tanriöver, N. Some properties of Bertrand curves in Lorentzian n-space . Int. J. Geom. Methods Mod. Phys. 2016, 13, 1650064. [Google Scholar] [CrossRef]
- Whittemore, J.K. Bertrand curves and helices. Duke Math. J. 1940, 6, 235–245. [Google Scholar] [CrossRef]
- Kazaz, M.; Uğurlu, H.H. Bertrand Partner D-Curves in the minkowski3-space E3-1. Math. Sci. Appl. E-Notes 2014, 2, 68–82. [Google Scholar]
- Aksoyak, F.K.; Gök, I.S.M.A.I.L.; Ilarslan, K. Generalized null Bertrand curves in Minkowski space-time. Ann. Alexandru Ioan Cuza Univ. Math. 2014, 60, 489–502. [Google Scholar] [CrossRef]
- Magid, M.A. Timelike surfaces in Lorentz 3-space with prescribed mean curvature and Gauss map. Hokkaido Math. J. 1991, 20, 447–464. [Google Scholar] [CrossRef]
- Önder, M.; Uğurlu, H.H. Frenet frames and invariants of timelike ruled surfaces. Ain Shams Eng. J. 2013, 4, 507–513. [Google Scholar] [CrossRef]
- Babaarslan, M.; Munteanu, M.I. Time-like loxodromes on rotational surfaces in Minkowski 3-space. Ann. Alexandru Ioan Cuza Univ.-Math. 2015, 61, 471–484. [Google Scholar]
- Alluhaibi, N.; Abdel-Baky, R.A. Kinematic Geometry of Timelike Ruled Surfaces in Minkowski 3-Space . Symmetry 2022, 14, 749. [Google Scholar] [CrossRef]
- Babaarslan, M.; Kayacik, M. Time-like loxodromes on helicoidal surfaces in Minkowski 3-space. Filomat 2017, 31, 4405–4414. [Google Scholar] [CrossRef]
- Li, Y.; Mofarreh, F.; Abdel-Baky, R.A. Timelike Circular Surfaces and Singularities in Minkowski 3-Space. Symmetry 2022, 14, 1914. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; Li, P.; Chang, Y. Singularities of Osculating Developable Surfaces of Timelike Surfaces along Curves. Symmetry 2022, 14, 2251. [Google Scholar] [CrossRef]
- Gür, M.S. Geometric properties of timelike surfaces in Lorentz-Minkowski 3-space. Filomat 2023, 37, 5735–5749. [Google Scholar] [CrossRef]
- Yapar, Z.; Sa, Y. On the geometry of closed timelike ruled surfaces in dual Lorentzian space. Int. J. Appl. Math. 2016, 29, 7–18. [Google Scholar] [CrossRef]
- Yapar, Z.; Sagiroglu, Y. On a motion of a line along two closed ruled surfaces. Int. J. Math. Anal. 2015, 9, 1877–1887. [Google Scholar] [CrossRef]
- Atalay, G.Ş.; Kasap, E. Developed Motion of Robot End-Effector of Timelike Ruled Surfaces With Spacelike Rulings (The First Case). Hagia Sophia J. Geom. 2020, 2, 9–21. [Google Scholar]
- Güler, F.; Kasap, E. A path planning method for robot end effector motion using the curvature theory of the ruled surfaces. Int. J. Geom. Methods Mod. Phys. 2018, 15, 1850048. [Google Scholar] [CrossRef]
- Li, Y.L.; Zhu, Y.S.; Sun, Q.Y. Singularities and dualities of pedal curves in pseudo-hyperbolic and de Sitter space. Int. J. Geom. Methods Mod. Phys. 2021, 18, 2150008. [Google Scholar] [CrossRef]
- Li, Y.L.; Nazra, S.; Abdel-Baky, R.A. Singularities properties of timelike sweeping surface in Minkowski 3-Space. Symmetry 2022, 14, 1996. [Google Scholar] [CrossRef]
- Li, Y.L.; Chen, Z.; Nazra, S.; Abdel-Baky, R.A. Singularities for timelike developable surfaces in Minkowski 3-Space. Symmetry 2023, 15, 277. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mofarreh, F. Timelike Surface Couple with Bertrand Couple as Joint Geodesic Curves in Minkowski 3-Space. Symmetry 2024, 16, 732. https://doi.org/10.3390/sym16060732
Mofarreh F. Timelike Surface Couple with Bertrand Couple as Joint Geodesic Curves in Minkowski 3-Space. Symmetry. 2024; 16(6):732. https://doi.org/10.3390/sym16060732
Chicago/Turabian StyleMofarreh, Fatemah. 2024. "Timelike Surface Couple with Bertrand Couple as Joint Geodesic Curves in Minkowski 3-Space" Symmetry 16, no. 6: 732. https://doi.org/10.3390/sym16060732
APA StyleMofarreh, F. (2024). Timelike Surface Couple with Bertrand Couple as Joint Geodesic Curves in Minkowski 3-Space. Symmetry, 16(6), 732. https://doi.org/10.3390/sym16060732