On Symmetries of Integrable Quadrilateral Equations
Abstract
:1. Introduction
2. Notations and Definitions
3. General Description of the Method
3.1. Isospectral Flows
- (1)
- The matrix equation
- (2)
3.2. Symmetries
3.3. Isospectral Flows
- (1)
- The matrix equation
- (2)
4. Symmetries for the lpKdV Equation
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nijhoff, F.W.; Papageorgiou, V.G. Similarity reductions of integrable lattices and discrete analogues of the Painlevé II equation. Phys. Lett. A 1991, 153, 337–344. [Google Scholar] [CrossRef]
- Fordy, A.; Xenitidis, P. Symmetries of ZN graded discrete integrable systems. J. Phys. A Math. Theor. 2020, 53, 235201. [Google Scholar] [CrossRef]
- Levi, D.; Martina, L. Integrable hierarchies of nonlinear difference-difference equations and symmetries. J. Phys. A Math. Gen. 2001, 34, 10357–10368. [Google Scholar] [CrossRef]
- Levi, D.; Petrera, M. Continuous symmetries of the lattice potential KdV equation. J. Phys. A Math. Theor. 2007, 40, 4141–4159. [Google Scholar] [CrossRef]
- Garifullin, R.N.; Gudkova, E.V.; Habibullin, I.T. Method for searching higher symmetries for quad-graph equations. J. Phys. A Math. Theor. 2011, 44, 325202. [Google Scholar] [CrossRef]
- Levi, D.; Petrera, M.; Scimiterna, C. The lattice Schwarzian KdV equation and its symmetries. J. Phys. A Math. Theor. 2007, 40, 12753–12761. [Google Scholar] [CrossRef]
- Levi, D.; Yamilov, R.I. The generalized symmetry method for discrete equations. J. Phys. A Math. Theor. 2009, 42, 454012. [Google Scholar] [CrossRef]
- Levi, D.; Winternitz, P.; Yamilov, R.I. Continuous Symmetries and Integrability of Discrete Equations; AMS: Providence, RI, USA, 2023. [Google Scholar]
- Mikhailov, A.V. Formal Diagonalisation of the Lax-Darboux Scheme and Conservation Laws of Integrable Partial Differential, Differential Difference and Partial Difference. DIS a Follow-Up Meeting, 8–12 July 2013 (Isaac Newton Institute for Mathematical Sciences). Available online: https://www.newton.ac.uk/event/disw05/ (accessed on 1 December 2023).
- Mikhailov, A.V. Formal diagonalisation of Lax-Darboux schemes. Model. Anal. Inform. Syst. 2015, 22, 795–817. [Google Scholar] [CrossRef]
- Mikhailov, A.V.; Wang, J.P.; Xenitidis, P. Recursion operators, conservation laws and integrability conditions for difference equations. Theor. Math. Phys. 2011, 167, 421–443. [Google Scholar] [CrossRef]
- Rasin, A.G. Infinitely many symmetries and conservation laws for quad-graph equations via the Gardner method. J. Phys. A Math. Theor. 2010, 43, 235201. [Google Scholar] [CrossRef]
- Rasin, O.G.; Hydon, P.E. Symmetries of integrable difference equations on the quad-graph. Stud. Appl. Math. 2007, 119, 253–269. [Google Scholar] [CrossRef]
- Tongas, A.; Tsoubelis, D.; Xenitidis, P. Affine linear and D4 symmetric lattice equations: Symmetry analysis and reductions. J. Phys. A Math. Theor. 2007, 40, 13353–13384. [Google Scholar] [CrossRef]
- Carpentier, S.; Mikhailov, A.V.; Wang, J.P. Rational recursion operators for integrable differential-difference equations. Commun. Math. Phys. 2019, 370, 807–851. [Google Scholar] [CrossRef]
- Chen, D.Y.; Zhang, D.J. Lie algebraic structures of (1+1)-dimensional Lax integrable systems. J. Math. Phys. 1996, 37, 5524–5538. [Google Scholar] [CrossRef]
- Chen, D.Y.; Zhang, H.W. Lie algebraic structure for the AKNS system. J. Phys. A Math. Gen. 1991, 24, 377–383. [Google Scholar] [CrossRef]
- Chen, D.Y.; Xin, H.W.; Zhang, D.J. Lie algebraic structures of some (1+2)-dimensional Lax integrable systems. Chaos Solitons Fractals 2003, 15, 761–770. [Google Scholar] [CrossRef]
- Fu, W.; Huang, L.; Tamizhmani, K.M.; Zhang, D.J. Integrability properties of the differential-difference Kadomtsev-Petviashvili hierarchy and continuum limits. Nonlinearity 2013, 26, 3197–3229. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, D.J.; Zhao, X.H. Symmetries of the DΔmKP hierarchy and their continuum limits. Stud. Appl. Math. 2024, 152, 404–430. [Google Scholar] [CrossRef]
- Ma, W.X. K symmetries and τ symmetries of evolution equations and their Lie algebras. J. Phys. A: Math. Gen. 1990, 23, 2707–2716. [Google Scholar] [CrossRef]
- Ma, W.X.; Fuchssteiner, B. Algebraic structure of discrete zero curvature equations and master symmetries of discrete evolution equations. J. Math. Phys. 1999, 40, 2400–2418. [Google Scholar] [CrossRef]
- Zhang, D.J.; Chen, S.T. Symmetries for the Ablowitz-Ladik hierarchy: Part I. Four-potential case. Stud. Appl. Math. 2010, 125, 393–418. [Google Scholar] [CrossRef]
- Zhang, D.J.; Chen, S.T. Symmetries for the Ablowitz-Ladik hierarchy: Part II. Integrable discrete nonlinear Schrödinger equations and discrete AKNS hierarchy. Stud. Appl. Math. 2010, 125, 419–443. [Google Scholar] [CrossRef]
- Zhang, D.J.; Ning, T.K.; Bi, J.B.; Chen, D.Y. New symmetries for the Ablowitz-Ladik hierarchies. Phys. Lett. A 2006, 359, 458–466. [Google Scholar] [CrossRef]
- Zhang, J.B.; Chen, Q. The τ-symmetries and Lie algebra structure of the Blaszak-Marciniak lattice equation. Math. Method Appl. Sci. 2024, 47, 8160–8170. [Google Scholar] [CrossRef]
- Fuchssteiner, B. Hamiltonian structure and integrability. Math. Sci. Eng. 1991, 185, 211–256. [Google Scholar]
- Zhang, D.J.; Chen, D.Y. Hamiltonian structure of discrete soliton systems. J. Phys. A Math. Gen. 2002, 35, 7225–7241. [Google Scholar] [CrossRef]
- Olver, P.J. Applications of Lie Groups to Differential Equations; Springer: New York, NY, USA, 1993. [Google Scholar]
- Nijhoff, F.W.; Capel, H.W. The discrete Korteweg-de Vries equation. Acta Appl. Math. 1995, 39, 133–158. [Google Scholar] [CrossRef]
- Nijhoff, F.W.; Quispel, G.R.W.; Capel, H.W. Direct linearization of nonlinear difference-difference equations. Phys. Lett. A 1983, 97, 125–128. [Google Scholar] [CrossRef]
- Adler, V.E.; Bobenko, A.I.; Suris, Y.B. Classification of integrable equationson quad-graphs. The consistency approach. Commun. Math. Phys. 2003, 233, 513–543. [Google Scholar] [CrossRef]
- Wahlquist, H.D.; Estabrook, F.B. Bäcklund transformation for solutions of the Korteweg-de Vries equation. Phys. Rev. Lett. 1973, 31, 1386–1390. [Google Scholar] [CrossRef]
- Hietarinta, J.; Joshi, N.; Nijhoff, F.W. Discrete Systems and Integrability; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Cao, C.W.; Zhang, G.Y. Lax pairs for discrete integrable equations via Darboux transformations. Chin. Phys. Lett. 2012, 29, 050202. [Google Scholar] [CrossRef]
- Adler, V.E. On the structure of the Bäcklund transformations for the relativistic lattices. J. Nonlinear Math. Phys. 2000, 7, 34–56. [Google Scholar] [CrossRef]
- Adler, V.E. Discrete equations on planar graphs. J. Phys. A Math. Gen. 2001, 34, 10453–10460. [Google Scholar] [CrossRef]
- Zhang, D.D.; van der Kamp, P.H.; Zhang, D.J. Multi-component extension of CAC systems. Symmetry Integr. Geom. Meth. Appl. 2020, 16, 060. [Google Scholar] [CrossRef]
- Magri, F. A simple model of the integrable Hamiltonian equation. J. Math. Phys. 1978, 19, 1156–1162. [Google Scholar] [CrossRef]
- Miwa, T.; Jimbo, M.; Date, E. Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Levi, D.; Rodriguez, M.A. Yamilov’s theorem for differential and difference equations. Ufa Math. J. 2021, 13, 152–159. [Google Scholar] [CrossRef]
- Wiersma, G.L.; Capel, H.W. Lattice equations, hierarchies and Hamiltonian structures. Phys. A 1987, 142, 199–244. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J.; Liu, J.; Zhang, D.-j. On Symmetries of Integrable Quadrilateral Equations. Symmetry 2024, 16, 744. https://doi.org/10.3390/sym16060744
Cheng J, Liu J, Zhang D-j. On Symmetries of Integrable Quadrilateral Equations. Symmetry. 2024; 16(6):744. https://doi.org/10.3390/sym16060744
Chicago/Turabian StyleCheng, Junwei, Jin Liu, and Da-jun Zhang. 2024. "On Symmetries of Integrable Quadrilateral Equations" Symmetry 16, no. 6: 744. https://doi.org/10.3390/sym16060744
APA StyleCheng, J., Liu, J., & Zhang, D. -j. (2024). On Symmetries of Integrable Quadrilateral Equations. Symmetry, 16(6), 744. https://doi.org/10.3390/sym16060744