Fixed Point Method for Nonlinear Fractional Differential Equations with Integral Boundary Conditions on Tetramethyl-Butane Graph
Abstract
:1. Introduction
2. Preliminaries
3. Algorithm
- Vertex Labeling: Label the vertices of the tetramethylbutane graph as 0 or 1 by fixing the edge length to a unit of 1.
- FDEs on Each Edge: On each edge of the graph, define following the FDEs:
- Boundary Conditions: Apply the following integral boundary conditions to the problem:
- Solution Method: Solve the system of FDEs defined on each edge using fixed-point theory by constructing an operator.
4. Main Results
5. Ulam–Hyers Stability
6. Examples
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbas, S.; Benchohra, M.; Lazreg, J.E.; Nieto, J.J.; Zhou, Y. Fractional Differential Equations and Inclusions: Classical and Advanced Topics; World Scientific: Singapore, 2023. [Google Scholar]
- Xu, X.; Jiang, D.; Yuan, C. Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation. Nonlinear Anal. Theory Methods Appl. 2009, 71, 4676–4688. [Google Scholar] [CrossRef]
- Bhatter, S.; Mathur, A.; Kumar, D.; Nisar, K.S.; Singh, J. Fractional modified Kawahara equation with Mittag–Leffler law. Chaos Solitons Fractals 2020, 131, 109508. [Google Scholar] [CrossRef]
- Ali, M.; Aziz, S.; Malik, S.A. Inverse problem for a multi-term fractional differential equation. Fract. Calc. Appl. Anal. 2020, 23, 799–821. [Google Scholar] [CrossRef]
- Staněk, S. The Neumann problem for the generalized Bagley-Torvik fractional differential equation. Fract. Calc. Appl. Anal. 2016, 19, 907–920. [Google Scholar] [CrossRef]
- Al-Musalhi, F.; Al-Salti, N.; Karimov, E. Initial boundary value problems for a fractional differential equation with hyper-Bessel operator. Fract. Calc. Appl. Anal. 2018, 21, 200–219. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q. Lyapunov-type inequalities for nonlinear fractional differential equation with Hilfer fractional derivative under multi-point boundary conditions. Fract. Calc. Appl. Anal. 2018, 21, 833–843. [Google Scholar] [CrossRef]
- Baghani, H.; Nieto, J.J. Some new properties of the Mittag-Leffler functions and their applications to solvability and stability of a class of fractional Langevin differential equations. Qual. Theory Dyn. Syst. 2024, 23, 18. [Google Scholar] [CrossRef]
- Slimane, I.; Dahmani, Z.; Nieto, J.J.; Abdeljawad, T. Existence and stability for a nonlinear hybrid differential equation of fractional order via regular Mittag–Leffler kernel. Math. Methods Appl. Sci. 2023, 46, 8043–8053. [Google Scholar] [CrossRef]
- Mathur, T.; Agarwal, S.; Goyal, S.; Pritam, K.S. Analytical solutions of some fractional diffusion boundary value problems. In Fractional Order Systems and Applications in Engineering; Elsevier: Amsterdam, The Netherlands, 2023; pp. 37–50. [Google Scholar]
- Bansal, K.; Arora, S.; Pritam, K.S.; Mathur, T.; Agarwal, S. Dynamics of crime transmission using fractional-order differential equations. Fractals 2022, 30, 2250012. [Google Scholar] [CrossRef]
- Baleanu, D.; Jajarmi, A.; Mohammadi, H.; Rezapour, S. Analysis of the human liver model with Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 2020, 134, 7. [Google Scholar] [CrossRef]
- Bachir, F.S.; Abbas, S.; Benbachir, M.; Benchohra, M. Hilfer-Hadamard fractional differential equations; Existence and attractivity. Adv. Theory Nonlinear Anal. Appl. 2021, 5, 49–57. [Google Scholar] [CrossRef]
- Ding, X.L.; Nieto, J.J.; Wang, X. Analytical solutions for fractional partial delay differential-algebraic equations with Dirichlet boundary conditions defined on a finite domain. Fract. Calc. Appl. Anal. 2022, 25, 408–438. [Google Scholar] [CrossRef]
- Shah, K.; Khan, R.A. Iterative scheme for a coupled system of fractional-order differential equations with three-point boundary conditions. Math. Methods Appl. Sci. 2018, 41, 1047–1053. [Google Scholar] [CrossRef]
- Liang, J.; Mu, Y.; Xiao, T.J. Initial-value/Nonlocal Cauchy problems for fractional differential equations involving ψ-Hilfer multivariable operators. Fract. Calc. Appl. Anal. 2020, 23, 1090–1124. [Google Scholar] [CrossRef]
- Yadav, A.; Mathur, T.; Agarwal, S.; Yadav, B. Fractional boundary value problem in complex domain. J. Math. Anal. Appl. 2023, 526, 127178. [Google Scholar] [CrossRef]
- Lumer, G. Connecting of local operators and evolution equations on networks. In Proceedings of the Potential Theory Copenhagen 1979: Proceedings of a Colloquium Held in Copenhagen, Copenhagen, Denmark, 14–18 May 1979; Springer: Berlin/Heidelberg, Germany, 1980; pp. 219–234. [Google Scholar]
- Nicaise, S. Some results on spectral theory over networks, applied to nerve impulse transmission. In Proceedings of the Polynômes Orthogonaux et Applications: Proceedings of the Laguerre Symposium held at Bar-le-Duc, Bar-le-Duc, France, 15–18 October 1984; Springer: Berlin/Heidelberg, Germany, 1985; pp. 532–541. [Google Scholar]
- Von Below, J. Sturm-Liouville eigenvalue problems on networks. Math. Methods Appl. Sci. 1988, 10, 383–395. [Google Scholar] [CrossRef]
- Pokornyi, Y.V. On the spectrum of certain problems on graphs. Uspekhi Mat. Nauk 1987, 42, 128–129. [Google Scholar]
- Gordeziani, D.; Kupreishvli, M.; Meladze, H.; Davitashvili, T. On the solution of boundary value problem for differential equations given in graphs. Appl. Math. Lett. 2008, 13, 80–91. [Google Scholar]
- Currie, S.; Watson, B.A. Indefinite boundary value problems on graphs. Oper. Matrices 2011, 5, 565–584. [Google Scholar] [CrossRef]
- Graef, J.R.; Kong, L.; Wang, M. Existence and uniqueness of solutions for a fractional boundary value problem on a graph. Fract. Calc. Appl. Anal. 2014, 17, 499–510. [Google Scholar] [CrossRef]
- Mehandiratta, V.; Mehra, M.; Leugering, G. Existence and uniqueness results for a nonlinear Caputo fractional boundary value problem on a star graph. J. Math. Anal. Appl. 2019, 477, 1243–1264. [Google Scholar] [CrossRef]
- Ali, W.; Turab, A.; Nieto, J.J. On the novel existence results of solutions for a class of fractional boundary value problems on the cyclohexane graph. J. Inequal. Appl. 2022, 2022, 5. [Google Scholar] [CrossRef]
- Baleanu, D.; Etemad, S.; Mohammadi, H.; Rezapour, S. A novel modeling of boundary value problems on the glucose graph. Commun. Nonlinear Sci. Numer. Simul. 2021, 100, 105844. [Google Scholar] [CrossRef]
- Etemad, S.; Rezapour, S. On the existence of solutions for fractional boundary value problems on the ethane graph. Adv. Difference Equ. 2020, 2020, 276. [Google Scholar] [CrossRef]
- Turab, A.; Sintunavarat, W. The novel existence results of solutions for a nonlinear fractional boundary value problem on the ethane graph. Alex. Eng. J. 2021, 60, 5365–5374. [Google Scholar] [CrossRef]
- Mehandiratta, V.; Mehra, M. A difference scheme for the time-fractional diffusion equation on a metric star graph. Appl. Numer. Math. 2020, 158, 152–163. [Google Scholar] [CrossRef]
- Turab, A.; Rosli, N. Study of fractional differential equations emerging in the theory of chemical graphs: A robust approach. Mathematics 2022, 10, 4222. [Google Scholar] [CrossRef]
- Sintunavarat, W.; Turab, A. A unified fixed point approach to study the existence of solutions for a class of fractional boundary value problems arising in a chemical graph theory. PLoS ONE 2022, 17, e0270148. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, W. Existence and Ulam’s type stability results for a class of fractional boundary value problems on a star graph. Math. Methods Appl. Sci. 2020, 43, 8568–8594. [Google Scholar] [CrossRef]
- Rezapour, S.; Deressa, C.T.; Hussain, A.; Etemad, S.; George, R.; Ahmad, B. A theoretical analysis of a fractional multi-dimensional system of boundary value problems on the methylpropane graph via fixed point technique. Mathematics 2022, 10, 568. [Google Scholar] [CrossRef]
- Faheem, M.; Khan, A. A collocation method for time-fractional diffusion equation on a metric star graph with η edges. Math. Methods Appl. Sci. 2023, 46, 8895–8914. [Google Scholar] [CrossRef]
- Varmuza, K.; Dehmer, M.; Emmert-Streib, F.; Filzmoser, P. Automorphism groups of alkane graphs. Croat. Chem. Acta 2021, 94, 47–58. [Google Scholar] [CrossRef]
- Balaban, A.T. Applications of graph theory in chemistry. J. Chem. Inf. Comput. 2021, 25, 334–343. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives:Theory and Applications; Gordon and Breach Science Publishers: Yverdon, Switzerland, 1993; pp. xxxvi+976. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; John Wiley & Sons, Inc.: New York, NY, USA, 1993; pp. xvi+366. [Google Scholar]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: Berlin/Heidelberg, Germany, 2003; Volume 14. [Google Scholar]
- Su, X. Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 2009, 22, 64–69. [Google Scholar] [CrossRef]
- Wang, J.; Fec, M.; Zhou, Y. Ulam’s type stability of impulsive ordinary differential equations. J. Math. Anal. Appl. 2012, 395, 258–264. [Google Scholar] [CrossRef]
- Wang, J.; Li, X. A uniform method to Ulam–Hyers stability for some linear fractional equations. Mediterr. J. Math. 2016, 13, 625–635. [Google Scholar] [CrossRef]
- Ben Chikh, S.; Amara, A.; Etemad, S.; Rezapour, S. On Hyers–Ulam stability of a multi-order boundary value problems via Riemann–Liouville derivatives and integrals. Adv. Differ. Equ. 2020, 2020, 547. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieto, J.J.; Yadav, A.; Mathur, T.; Agarwal, S. Fixed Point Method for Nonlinear Fractional Differential Equations with Integral Boundary Conditions on Tetramethyl-Butane Graph. Symmetry 2024, 16, 756. https://doi.org/10.3390/sym16060756
Nieto JJ, Yadav A, Mathur T, Agarwal S. Fixed Point Method for Nonlinear Fractional Differential Equations with Integral Boundary Conditions on Tetramethyl-Butane Graph. Symmetry. 2024; 16(6):756. https://doi.org/10.3390/sym16060756
Chicago/Turabian StyleNieto, Juan J., Ashish Yadav, Trilok Mathur, and Shivi Agarwal. 2024. "Fixed Point Method for Nonlinear Fractional Differential Equations with Integral Boundary Conditions on Tetramethyl-Butane Graph" Symmetry 16, no. 6: 756. https://doi.org/10.3390/sym16060756
APA StyleNieto, J. J., Yadav, A., Mathur, T., & Agarwal, S. (2024). Fixed Point Method for Nonlinear Fractional Differential Equations with Integral Boundary Conditions on Tetramethyl-Butane Graph. Symmetry, 16(6), 756. https://doi.org/10.3390/sym16060756