Existence of a Fixed Point and Convergence of Iterates for Self-Mappings of Metric Spaces with Graphs
Abstract
:1. Introduction
2. Strict -Contractions
3. Rakotch -Contraction
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Bargetz, C.; Medjic, E. On the rate of convergence of iterated Bregman projections and of the alternating algorithm. J. Math. Anal. Appl. 2020, 481, 123482. [Google Scholar] [CrossRef]
- Du, W.-S. Some generalizations of fixed point theorems of Caristi type and Mizoguchi–Takahashi type under relaxed conditions. Bull. Braz. Math. Soc. 2019, 50, 603–624. [Google Scholar] [CrossRef]
- Goebel, K.; Kirk, W.A. Topics in Metric Fixed Point Theory; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Goebel, K.; Reich, S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 1984. [Google Scholar]
- Karapinar, E.; Mitrovic, Z.; Ozturk, A.; Radenovic, S. On a theorem of Ciric in b-metric spaces. Rend. Circ. Mat. Palermo 2021, 70, 217–225. [Google Scholar] [CrossRef]
- Kozlowski, W.M. An Introduction to Fixed Point Theory in Modular Function Spaces; Springer: Cham, Switzerland, 2014; pp. 159–222. [Google Scholar]
- Rakotch, E. A note on contractive mappings. Proc. Am. Math. Soc. 1962, 13, 459–465. [Google Scholar] [CrossRef]
- Reich, S.; Zaslavski, A.J. Genericity in nonlinear analysis. In Developments in Mathematics; Springer: New York, NY, USA, 2014; Volume 34. [Google Scholar]
- Zaslavski, A.J. Approximate Solutions of Common Fixed Point Problems. In Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Zaslavski, A.J. Algorithms for Solving Common Fixed Point Problems. In Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Censor, Y.; Davidi, R.; Herman, G.T. Perturbation resilience and superiorization of iterative algorithms. Inverse Probl. 2010, 26, 065008. [Google Scholar] [CrossRef] [PubMed]
- Censor, Y.; Zaknoon, M. Algorithms and convergence results of projection methods for inconsistent feasibility problems: A review. Pure Appl. Func. Anal. 2018, 3, 565–586. [Google Scholar]
- Gibali, A. A new split inverse problem and an application to least intensity feasible solutions. Pure Appl. Funct. Anal. 2017, 2, 243–258. [Google Scholar]
- Aleomraninejad, S.M.A.; Rezapour, S.; Shahzad, N. Some fixed point results on a metric space with a graph. Topol. Appl. 2012, 159, 659–663. [Google Scholar] [CrossRef]
- Bojor, F. Fixed point of ϕ-contraction in metric spaces endowed with a graph. An. Univ. Craiova Ser. Mat. Inform. 2010, 37, 85–92. [Google Scholar]
- Bojor, F. Fixed point theorems for Reich type contractions on metric spaces with a graph. Nonlinear Anal. 2012, 75, 3895–3901. [Google Scholar] [CrossRef]
- Gwóźdź-ukawska, G.; Jachymski, J. IFS on a metric space with a graph structure and extensions of the Kelisky-Rivlin theorem. J. Math. Anal. Appl. 2009, 356, 453–463. [Google Scholar] [CrossRef]
- Jachymski, J. The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 2008, 136, 1359–1373. [Google Scholar] [CrossRef]
- Reich, S.; Zaslavski, A.J. Contractive mappings on metric spaces with graphs. Mathematics 2021, 9, 2774. [Google Scholar] [CrossRef]
- Samei, M.E. Some fixed point results on intuitionistic fuzzy metric spaces with a graph. Sahand Commun. Math. Anal. 2019, 13, 141–152. [Google Scholar] [CrossRef]
- Suantai, S.; Donganont, M.; Cholamjiak, W. Hybrid methods for a countable family of G-nonexpansive mappings in Hilbert spaces endowed with graphs. Mathematics 2019, 7, 936. [Google Scholar] [CrossRef]
- Suantai, S.; Kankam, K.; Cholamjiak, P.; Cholamjiak, W. A parallel monotone hybrid algorithm for a finite family of G-nonexpansive mappings in Hilbert spaces endowed with a graph applicable in signal recovery. Comp. Appl. Math. 2021, 40, 145. [Google Scholar] [CrossRef]
- Suparatulatorn, R.; Cholamjiak, W.; Suantai, S. A modified S-iteration process for G-nonexpansive mappings in Banach spaces with graphs. Numer. Algorithms 2018, 77, 479–490. [Google Scholar] [CrossRef]
- Suparatulatorn, R.; Suantai, S.; Cholamjiak, W. Hybrid methods for a finite family of G-nonexpansive mappings in Hilbert spaces endowed with graphs. AKCE Int. J. Graphs Comb. 2017, 14, 101–111. [Google Scholar] [CrossRef]
- Eldred, A.A.; Veeramani, P. Existence and convergence of best proximity points. J. Math. Anal. Appl. 2006, 323, 1001–1006. [Google Scholar] [CrossRef]
- Kirk, W.A.; Srinivasan, P.S.; Veeramani, P. Fixed points for mappings satisfying cyclical contractive conditions. Fixed Point Theory 2003, 4, 79–89. [Google Scholar]
- Wlodarczyk, K.; Plebaniak, R.; Banach, A. Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces. Nonlinear Anal. 2009, 70, 3332–3341. [Google Scholar] [CrossRef]
- Zaslavski, A.J. Existence of a fixed point for a cyclical contractive mapping. Pan-Am. Math. J. 2022, 32, 57–64. [Google Scholar]
- Radenovic, S. A note on fixed point theory for cyclic ϕ-contractions. Fixed Point Theory Appl. 2015, 2015, 189. [Google Scholar] [CrossRef]
- Radenovic, S. Some remarks on mappings satisfying cyclical contractive conditions. Afr. Mat. 2015, 27, 291–295. [Google Scholar] [CrossRef]
- Radenovic, S.; Dosenovic, T.; Lampert, T.A.; Golubovíć, Z.A. A note on some recent fixed point results for cyclic contractions in b-metric spaces and an application to integral equations. Appl. Math. Comput. 2015, 273, 155–164. [Google Scholar] [CrossRef]
- Reich, S.; Zaslavski, A.J. Monotone contractive mappings. J. Nonlinear Var. Anal. 2017, 1, 391–401. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaslavski, A.J. Existence of a Fixed Point and Convergence of Iterates for Self-Mappings of Metric Spaces with Graphs. Symmetry 2024, 16, 705. https://doi.org/10.3390/sym16060705
Zaslavski AJ. Existence of a Fixed Point and Convergence of Iterates for Self-Mappings of Metric Spaces with Graphs. Symmetry. 2024; 16(6):705. https://doi.org/10.3390/sym16060705
Chicago/Turabian StyleZaslavski, Alexander J. 2024. "Existence of a Fixed Point and Convergence of Iterates for Self-Mappings of Metric Spaces with Graphs" Symmetry 16, no. 6: 705. https://doi.org/10.3390/sym16060705
APA StyleZaslavski, A. J. (2024). Existence of a Fixed Point and Convergence of Iterates for Self-Mappings of Metric Spaces with Graphs. Symmetry, 16(6), 705. https://doi.org/10.3390/sym16060705