Lump-Type Solutions, Mixed Solutions and Rogue Waves for a (3+1)-Dimensional Variable-Coefficients Burgers Equation
Abstract
:1. Introduction
2. Rational Solution of the (3+1)-Dimensional Variable-Coefficients Burgers Equation
3. Interaction between Solitons and Lump Waves
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Joseph, R.I. Solitary waves in a finite depth fluid. J. Phys. A Math. Gen. 1977, 10, L225–L227. [Google Scholar] [CrossRef]
- Barna, I.F.; Pocsai, M.A.; Mátyás, L. Time-dependent analytic solutions for water waves above sea of varying depths. Mathematics 2022, 10, 2311. [Google Scholar] [CrossRef]
- Das, G.C.; Sarma, J.; Uberoi, C. Explosion of soliton in a multicomponent plasma. Phys. Plasmas 1997, 4, 2095. [Google Scholar] [CrossRef]
- Polanco Adames, D.A.; Dou, J.P.; Lin, J.; Zhu, G.J.; Li, H.J. Nonlinear optical potential with Parity-Time symmetry in a coherent atomic gas. Symmetry 2022, 14, 1135. [Google Scholar] [CrossRef]
- Chen, Z.M.; Duan, W.S. Rouge waves in fluid-filled elastic tube. Acta. Phys. Sin. 2020, 69, 014701. [Google Scholar] [CrossRef]
- Wang, T.Y.; Zhou, Q.; Liu, W.J. Soliton fusion and fission for the high-order coupled nonlinear Schrödinger system in fiber lasers. Chin. Phys. B 2022, 31, 020501. [Google Scholar] [CrossRef]
- Chen, M.; Fan, E.G. Riemann–Hilbert approach for discrete sine-Gordon equation with simple and double poles. Stud. Appl. Math. 2022, 148, 1180–1207. [Google Scholar] [CrossRef]
- Hu, B.B.; Lin, J.; Zhang, L. Riemann–Hilbert problem associated with the vector Lakshmanan–Porsezian–Daniel model in the birefringent optical fibers. Math. Method Appl. Sci. 2022, 45, 11545–11561. [Google Scholar] [CrossRef]
- Shi, X.R.; Yang, Y.Q. Exact solutions and Darboux transformation for the reverse space-time nonlocal Lakshmanan–Porsezian–Daniel equation. Wave Motion 2023, 119, 103141. [Google Scholar] [CrossRef]
- Wang, G.H.; Liu, Q.P.; Mao, H. The modified Camassa–Holm equation: Bäcklund transformation and nonlinear superposition formula. J. Phys. A Math. Theor. 2020, 53, 294003. [Google Scholar] [CrossRef]
- Hirota, R. The Direct Method in Soliton Theory; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Satsuma, J.; Ablowitz, M.J. Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 1979, 20, 1496–1503. [Google Scholar] [CrossRef]
- Baronio, F.; Wabnitz, S.; Kodama, Y. Optical Kerr spatiotemporal dark-lump dynamics of hydrodynamic origin. Phys. Rev. Lett. 2016, 116, 173901. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, X.Y.; Li, W.T.; Li, B. Trajectory equation of a lump before and after collision with line, lump, and breather waves for (2+1)-dimensional Kadomtsev–Petviashvili equation. Chin. Phys. B 2019, 28, 110201. [Google Scholar] [CrossRef]
- Wu, H.L.; Wu, H.Y.; Zhu, Q.Y.; Fei, J.X.; Ma, Z.Y. Soliton, breather and lump molecules in the (2+1)-dimensional B-type Kadomtsev-Petviashvili-Korteweg De-Vries equation. Appl. Anal. Comput. 2022, 12, 230–244. [Google Scholar] [CrossRef]
- Hao, X.Z.; Li, Y. Interaction phenomena between solitons, lumps and breathers for the combined KP3-4 equation. Nonlinear Dyn. 2023, 111, 6701–6710. [Google Scholar] [CrossRef]
- Alshammari, F.S.; Rahman, Z.; Roshid, H.O.; Ullah, M.S.; Aldurayhim, A.; Ali, M.Z. Dynamical structures of multi-solitons and interaction of solitons to the higher-order KdV-5 equation. Symmetry 2023, 15, 626. [Google Scholar] [CrossRef]
- Ma, H.C.; Mao, X.; Deng, A.P. Interaction solutions for the second extended (3+1)-dimensional Jimbo–Miwa equation. Chin. Phys. B 2023, 32, 060201. [Google Scholar] [CrossRef]
- Zhou, K.; Zhu, J.R.; Ren, B. Some Novel Fusion and Fission Phenomena for an Extended (2+1)-Dimensional Shallow Water Wave Equation. Symmetry 2024, 16, 82. [Google Scholar] [CrossRef]
- Jin, X.W.; Lin, J. Rogue wave, interaction solutions to the KMM system. J. Magn. Magn. Mater. 2020, 502, 166590. [Google Scholar] [CrossRef]
- Wu, J.W.; Deng, Y.J.; Lin, J. Interactions solutions of various-type rogue with multi-stripe solitons and breather lump for the (2+1)-dimensional Maccari’s system. Int. J. Mod. Phys. B 2020, 34, 2050268. [Google Scholar] [CrossRef]
- Chen, S.J.; Lü, X.; Li, M.G.; Wang, F. Derivation and simulation of the M-lump solutions to two (2+1)-dimensional nonlinear equations. Phys. Scr. 2021, 96, 095201. [Google Scholar] [CrossRef]
- Li, Z.Q.; Chen, Q.Q.; Wang, M.M.; Li, B. New mixed solutions generated by velocity resonance in the (2+1)-dimensional Sawada–Kotera equation. Nonlinear Dyn. 2022, 108, 1617–1626. [Google Scholar]
- Ma, W.X. Lump waves in a spatial symmetric nonlinear dispersive wave model in (2+1)-dimensions. Mathematics 2023, 11, 4664. [Google Scholar] [CrossRef]
- Yan, X.W.; Chen, Y.; Wang, X.B.; Tian, S.F. General multi-breather, high-order lump and semi-rational solutions of the (2+1)-dimensional Mel’nikov equation. J. Phys. Soc. Jpn. 2024, 92, 024006. [Google Scholar] [CrossRef]
- Holloway, P.E.; Pelinovsky, E.; Talipova, T.; Barnes, B. A nonlinear model of internal tide transformation on the Australian North West Shelf. J. Phys. Oceanogr. 1997, 27, 871–896. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, Y.X.; Yang, H.W. Analysis of the rogue waves in the blood based on the high-order NLS equations with variable coefficients. Chin. Phys. B 2021, 30, 110202. [Google Scholar] [CrossRef]
- Gao, X.Y.; Guo, Y.J.; Shan, W.R. Beholding the shallow water waves near an ocean beach or in a lake via a Boussinesq-Burgers system. Chaos Soliton Fract. 2021, 147, 110875. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Zhao, M.; Sun, D.H.; Dong, C. An extended continuum mixed traffic model. Nonlinear Dyn. 2021, 103, 1891–1909. [Google Scholar] [CrossRef]
- Bertini, L.; Giacomin, G. Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 1997, 183, 571–607. [Google Scholar] [CrossRef]
- Liu, X.Z.; Yu, J.; Ren, B.; Yang, J.R. Bäcklund transformations for the Burgers equation via localization of residual symmetries. Chin. Phys. B 2014, 23, 110203. [Google Scholar] [CrossRef]
- Hu, H.C.; Li, Y.Y.; Zhu, H.D. Residual symmetry, interaction solutions and consistent tanh expansion solvability for the third-order Burgers equation. Chaos Soliton Fract. 2018, 108, 77–81. [Google Scholar] [CrossRef]
- Yan, Z.W.; Lou, S.Y. Soliton molecules in Sharma–Tasso–Olver–Burgers equation. Appl. Math. Lett. 2020, 104, 106271. [Google Scholar] [CrossRef]
- Lü, Z.S.; Zhang, H.Q. Soliton-like and period form solutions for high dimensional nonlinear evolution equations. Chaos Soliton Fract. 2003, 17, 669–673. [Google Scholar] [CrossRef]
- Gao, C.N.; Wang, Y.H. Lump-type solutions, interaction solutions, and periodic lump solutions of the generalized (3+1)-dimensional Burgers equation. Mod. Phys. Lett. B 2021, 35, 2150107. [Google Scholar] [CrossRef]
- Liu, J.; Wu, J.W. Lump and interaction solutions to the (3+1)-dimensional Burgers equation. Chin. Phys. B 2020, 29, 030201. [Google Scholar] [CrossRef]
- Chen, S.J.; Lü, X.; Tang, X.F. Novel evolutionary behaviors of the mixed solutions to a generalized Burgers equation with variable coefficients. Commun. Nonlinear Sci. Numer. Simulat. 2021, 95, 105628. [Google Scholar] [CrossRef]
- Holden, H.; Øksendal, B.; Ubøe, J.; Zhang, T. Stochastic Partial Differential Equations; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Wang, H.; Tian, S.F.; Chen, Y.; Zhang, T.T. Dynamics of kink solitary waves and lump waves with interaction phenomena in a generalized (3+1)-dimensional Kadomtsev–Petviashvili–Boussinesq equation. Int. J. Comput. Math. 2019, 97, 2178–2190. [Google Scholar] [CrossRef]
- Kharif, C.; Pelinovsky, E.; Slunyaev, A. Rogue Waves in the Ocean; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Zhang, X.; Chen, Y. General high-order rogue waves to nonlinear Schrödinger–Boussinesq equation with the dynamical analysis. Nonlinear Dyn. 2018, 93, 2169–2184. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Cai, Y.; Cheng, X. Lump-Type Solutions, Mixed Solutions and Rogue Waves for a (3+1)-Dimensional Variable-Coefficients Burgers Equation. Symmetry 2024, 16, 779. https://doi.org/10.3390/sym16070779
Wu J, Cai Y, Cheng X. Lump-Type Solutions, Mixed Solutions and Rogue Waves for a (3+1)-Dimensional Variable-Coefficients Burgers Equation. Symmetry. 2024; 16(7):779. https://doi.org/10.3390/sym16070779
Chicago/Turabian StyleWu, Jianwen, Yuejin Cai, and Xueping Cheng. 2024. "Lump-Type Solutions, Mixed Solutions and Rogue Waves for a (3+1)-Dimensional Variable-Coefficients Burgers Equation" Symmetry 16, no. 7: 779. https://doi.org/10.3390/sym16070779
APA StyleWu, J., Cai, Y., & Cheng, X. (2024). Lump-Type Solutions, Mixed Solutions and Rogue Waves for a (3+1)-Dimensional Variable-Coefficients Burgers Equation. Symmetry, 16(7), 779. https://doi.org/10.3390/sym16070779