Construction of Soliton Solutions of Time-Fractional Caudrey–Dodd–Gibbon–Sawada–Kotera Equation with Painlevé Analysis in Plasma Physics
Abstract
:1. Introduction
2. Preliminaries
The Jumarie’s Modified Riemann–Liouville Derivative
- 1.
- .
- 2.
- is a constant.
- 3.
- , and are constants.
- 4.
- .
- 5.
- .
3. Mathematical Analysis of the Procedure
4. Description of Analytical Methods
4.1. Bernoulli Sub-ODE Method
- Step 1: With the independent variables and combined into a single variable , we assume that
- Step 2: We assume that the formal solution to Equation (9) exists:when , Equation (11) is the type of Bernoulli equation, we can obtain the solution asWhen , Equation (12) reduces toSetting in Equation (12), we obtainSetting in Equation (12), we obtain
- Step 3: Taking into account the homogenous balance between the highest order derivatives and the nonlinear terms found in Equation (7) or (9), one can ascertain the positive integer k. Additionally, we precisely define the degree of as , which in turn yields the degree of the following other expressions:
- Step 4: A system of algebraic Equations is produced by substituting Equation (10) into Equation (9) using Equation (11), gathering all terms of the same powers of together, and setting each coefficient of them to zero. We find the values of and by solving this system. Lastly, we derive the exact traveling wave solutions of Equation (7) by inserting , , and Equations (14) and (15) into Equation (10).
4.2. Sardar Sub-Equation Technique
5. Application of Analytical Techniques
5.1. Bernoulli Sub-ODE Method
5.2. Sardar Sub-Equation Technique
6. Results and Discussion
7. Comparison of the Results
8. Painlevé Analysis
- Investigating the leading-order analysis;
- Finding resonances;
- Figuring out the requirements for compatibility.
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Machado, J.T.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1140–1153. [Google Scholar] [CrossRef]
- Hilfer, R. (Ed.) Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000; pp. 3–6. [Google Scholar]
- Butera, S.; Di Paola, M. A physically based connection between fractional calculus and fractal geometry. Ann. Phys. 2014, 350, 146–158. [Google Scholar] [CrossRef]
- Diethelm, K.; Ford, N.J. Analysis of fractional differential equations. J. Math. Anal. Appl. 2002, 265, 229–248. [Google Scholar] [CrossRef]
- Cattani, C.; Srivastava, H.M.; Yang, X.J. (Eds.) Fractional Dynamics; Walter de Gruyter GmbH & Co. KG: Berlin, Germany, 2015. [Google Scholar]
- Dalir, M.; Bashour, M. Applications of fractional calculus. Appl. Math. Sci. 2010, 4, 1021–1032. [Google Scholar]
- Wang, H. Research on application of fractional calculus in signal real-time analysis and processing in stock financial market. Chaos Solitons Fractals 2019, 128, 92–97. [Google Scholar] [CrossRef]
- Ghasemi, S.; Tabesh, A.; Askari-Marnani, J. Application of fractional calculus theory to robust controller design for wind turbine generators. IEEE Trans. Energy Convers. 2014, 29, 780–787. [Google Scholar] [CrossRef]
- Adomian, G. A new approach to nonlinear partial differential equations. J. Math. Anal. Appl. 1984, 102, 420–434. [Google Scholar] [CrossRef]
- Raissi, M.; Karniadakis, G.E. Hidden physics models: Machine learning of nonlinear partial differential equations. J. Comput. Phys. 2018, 357, 125–141. [Google Scholar] [CrossRef]
- Antontsev, S.N.; Díaz, J.I.; Shmarev, S.; Kassab, A.J. Energy Methods for Free Boundary Problems: Applications to Nonlinear PDEs and Fluid Mechanics. Progress in Nonlinear Differential Equations and Their Applications, Vol 48. Appl. Mech. Rev. 2002, 55, B74–B75. [Google Scholar] [CrossRef]
- Ghergu, M.; Radulescu, V. Nonlinear PDEs: Mathematical Models in Biology, Chemistry and Population Genetics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Raissi, M. Deep hidden physics models: Deep learning of nonlinear partial differential equations. J. Mach. Learn. Res. 2018, 19, 1–24. [Google Scholar]
- Yuan, T.; Zhu, J.; Wang, W.; Lu, J.; Wang, X.; Li, X.; Ren, K. A space-time partial differential equation based physics-guided neural network for sea surface temperature prediction. Remote Sens. 2023, 15, 3498. [Google Scholar] [CrossRef]
- Abou-Dina, M.S.; Helal, M.A. Reduction for the nonlinear problem of fluid waves to a system of integro-differential equations with an oceanographical application. J. Comput. Appl. Math. 1998, 95, 65–81. [Google Scholar] [CrossRef]
- Selvam, A.M.; Selvam, A.M. Nonlinear dynamics and chaos: Applications in meteorology and atmospheric physics. In Self-Organized Criticality and Predictability in Atmospheric Flows: The Quantum World of Clouds and Rain; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–40. [Google Scholar]
- Roubíček, T. Nonlinear Partial Differential Equations with Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 153. [Google Scholar]
- Remoissenet, M. Waves Called Solitons: Concepts and Experiments; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; pp. 1–11. [Google Scholar]
- Wadati, M. Introduction to solitons. Pramana 2001, 57, 841–847. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Multiple-soliton solutions for the KP equation by Hirota’s bilinear method and by the tanh–coth method. Appl. Math. Comput. 2007, 190, 633–640. [Google Scholar] [CrossRef]
- Fokas, A.S. A unified transform method for solving linear and certain nonlinear PDEs. Proc. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 1997, 453, 1411–1443. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Y.; Zhang, H. A new Riccati equation rational expansion method and its application to (2+ 1)-dimensional Burgers equation. Chaos Solitons Fractals 2005, 25, 1019–1028. [Google Scholar] [CrossRef]
- Ozisik, M.; Secer, A.; Bayram, M. On solitary wave solutions for the extended nonlinear Schrödinger equation via the modified F-expansion method. Opt. Quantum Electron. 2023, 55, 215. [Google Scholar] [CrossRef]
- Murad, M.A.S.; Hamasalh, F.K.; Ismael, H.F. Optical soliton solutions for time-fractional Fokas system in optical fiber by new Kudryashov approach. Optik 2023, 280, 170784. [Google Scholar] [CrossRef]
- Yokus, A.; Isah, M.A. Dynamical behaviors of different wave structures to the Korteweg–de Vries equation with the Hirota bilinear technique. Phys. A Stat. Mech. Its Appl. 2023, 622, 128819. [Google Scholar] [CrossRef]
- Liu, S.Z.; Wang, J.; Zhang, D.J. The Fokas-Lenells equations: Bilinear approach. Stud. Appl. Math. 2022, 148, 651–688. [Google Scholar] [CrossRef]
- Rezazadeh, H.; Korkmaz, A.; Khater, M.M.; Eslami, M.; Lu, D.; Attia, R.A. New exact traveling wave solutions of biological population model via the extended rational sinh-cosh method and the modified Khater method. Mod. Phys. Lett. B 2019, 33, 1950338. [Google Scholar] [CrossRef]
- Hereman, W.; Banerjee, P.P.; Korpel, A.; Assanto, G.; Van Immerzeele, A.; Meerpoel, A. Exact solitary wave solutions of nonlinear evolution and wave equations using a direct algebraic method. J. Phys. Math. Gen. 1986, 19, 607. [Google Scholar] [CrossRef]
- Khater, M.M. Novel computational simulation of the propagation of pulses in optical fibers regarding the dispersion effect. Int. J. Mod. Phys. B 2023, 37, 2350083. [Google Scholar] [CrossRef]
- Khater, M.M.; Zhang, X.; Attia, R.A. Accurate computational simulations of perturbed Chen–Lee–Liu equation. Results Phys. 2023, 45, 106227. [Google Scholar] [CrossRef]
- Ma, W.X. Lump solutions to the Kadomtsev–Petviashvili equation. Phys. Lett. A 2015, 379, 1975–1978. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, S. Dynamic nature of analytical soliton solutions of the (1+ 1)-dimensional Mikhailov-Novikov-Wang equation using the unified approach. Int. J. Math. Comput. Eng. 2023, 1, 217–228. [Google Scholar] [CrossRef]
- Khater, M.M. Computational simulations of propagation of a tsunami wave across the ocean. Chaos Solitons Fractals 2023, 174, 113806. [Google Scholar] [CrossRef]
- Wazwaz, A.M. The tanh and the sine–cosine methods for a reliable treatment of the modified equal width equation and its variants. Commun. Nonlinear Sci. Numer. Simul. 2006, 11, 148–160. [Google Scholar] [CrossRef]
- Khater, M.M. Abundant and accurate computational wave structures of the nonlinear fractional biological population model. Int. J. Mod. Phys. B 2023, 37, 2350176. [Google Scholar] [CrossRef]
- Younas, U.; Sulaiman, T.A.; Ren, J.; Yusuf, A. Lump interaction phenomena to the nonlinear ill-posed Boussinesq dynamical wave equation. J. Geom. Phys. 2022, 178, 104586. [Google Scholar] [CrossRef]
- Trudinger, N.S.; Wang, X.J. The Monge-Ampère equation and its geometric applications. Handb. Geom. Anal. 2008, 1, 467–524. [Google Scholar]
- Lou, S.Y.; Lu, J. Special solutions from the variable separation approach: The Davey-Stewartson equation. J. Phys. A Math. Gen. 1996, 29, 4209. [Google Scholar] [CrossRef]
- Anderson, D.R.; Ulness, D.J. Properties of the Katugampola fractional derivative with potential application in quantum mechanics. J. Math. Phys. 2015, 56, 6. [Google Scholar] [CrossRef]
- Al-Mdallal, Q.M.; Abdeljawad, T.; Hajji, M.A. Theoretical and numerical results for fractional difference and differential equations. Discret. Dyn. Nat. Soc. 2017, 2017, 2543452. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Rodríguez-Germá, L.; Trujillo, J.J. Complex Grünwald–Letnikov, Liouville, Riemann–Liouville, and Caputo derivatives for analytic functions. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 4174–4182. [Google Scholar] [CrossRef]
- Tachikawa, M.; Shiga, M. Evaluation of atomic integrals for hybrid Gaussian type and plane-wave basis functions via the McMurchie-Davidson recursion formula. Phys. Rev. E 2001, 64, 056706. [Google Scholar] [CrossRef] [PubMed]
- Akram, G.; Sadaf, M.; Zainab, I. Observations of fractional effects of β-derivative and M-truncated derivative for space time fractional Phi-4 equation via two analytical techniques. Chaos Solitons Fractals 2022, 154, 111645. [Google Scholar] [CrossRef]
- Onder, I.; Cinar, M.; Secer, A.; Bayram, M. Analytical solutions of simplified modified Camassa-Holm equation with conformable and M-truncated derivatives: A comparative study. J. Ocean. Eng. Sci. 2022. [Google Scholar] [CrossRef]
- Abdelhakim, A.A.; Machado, J.A.T. A critical analysis of the conformable derivative. Nonlinear Dyn. 2019, 95, 3063–3073. [Google Scholar] [CrossRef]
- Yadav, S.; Pandey, R.K.; Shukla, A.K. Numerical approximations of Atangana–Baleanu Caputo derivative and its application. Chaos Solitons Fractals 2019, 118, 58–64. [Google Scholar] [CrossRef]
- Bayrak, A.M. Application of the (G′/G)-expansion method for some space-time fractional partial differential equations. Commun. Fac. Sci. Univ. Ank. Ser. Math. Stat. 2018, 67, 60–67. [Google Scholar]
- Jumarie, G. Fractional partial differential equations and modified Riemann-Liouville derivative new methods for solution. J. Appl. Math. Comput. 2007, 24, 31–48. [Google Scholar] [CrossRef]
- Jhangeer, A.; Almusawa, H.; Rahman, R.U. Fractional derivative-based performance analysis to Caudrey-Dodd-Gibbon-Sawada-Kotera equation. Results Phys. 2022, 36, 105356. [Google Scholar] [CrossRef]
- Baskonus, H.M.; Mahmud, A.A.; Muhamad, K.A.; Tanriverdi, T. A study on Caudrey-Dodd-Gibbon-Sawada-Kotera partial differential equation. Math. Methods Appl. Sci. 2022, 45, 8737–8753. [Google Scholar] [CrossRef]
- Hilfer, R. Fractional diffusion based on Riemann-Liouville fractional derivatives. J. Phys. Chem. B 2000, 104, 3914–3917. [Google Scholar] [CrossRef]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef]
- Baleanu, D.; Inc, M.; Yusuf, A.; Aliyu, A.I. Lie symmetry analysis, exact solutions and conservation laws for the time fractional Caudrey-Dodd-Gibbon-Sawada-Kotera equation. Commun. Nonlinear Sci. Numer. Simul. 2018, 59, 222–234. [Google Scholar] [CrossRef]
- Saha Ray, S. New soliton solutions of conformable time fractional Caudrey–Dodd–Gibbon–Sawada–Kotera equation in modeling wave phenomena. Mod. Phys. Lett. B 2019, 33, 1950202. [Google Scholar] [CrossRef]
- Cheng, W.G.; Li, B.; Chen, Y. Bell polynomials approach applied to (2+ 1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation. Abstr. Appl. Anal. 2014, 2014, 523136. [Google Scholar] [CrossRef]
- Kumar, S.; Mohan, B.; Kumar, A. Generalized fifth-order nonlinear evolution equation for the Sawada-Kotera, Lax, and Caudrey-Dodd-Gibbon equations in plasma physics: Painlevé analysis and multi-soliton solutions. Phys. Scr. 2022, 97, 035201. [Google Scholar] [CrossRef]
- Geng, X.; He, G.; Wu, L. Riemann theta function solutions of the Caudrey-Dodd-Gibbon-Sawada-Kotera hierarchy. J. Geom. Phys. 2019, 140, 85–103. [Google Scholar] [CrossRef]
- Qu, Q.X.; Tian, B.; Sun, K.; Jiang, Y. Bäcklund transformation, Lax pair, and solutions for the Caudrey-Dodd-Gibbon equation. J. Math. Phys. 2011, 52, 013511. [Google Scholar] [CrossRef]
- Khan, K.; Akbar, M.A. Study of explicit travelling wave solutions of nonlinear evolution equations. Partial. Differ. Equ. Appl. Math. 2023, 7, 100475. [Google Scholar] [CrossRef]
- Muhammad, T.; Hamoud, A.A.; Emadifar, H.; Hamasalh, F.K.; Azizi, H.; Khademi, M. Traveling wave solutions to the Boussinesq equation via Sardar sub-equation technique. AIMS Math. 2022, 7, 11134–11149. [Google Scholar]
- Roy-Chowdhury, A.K. Painlevé Analysis and Its Applications; CRC Press: Boca Raton, FL, USA, 1999; Volume 105. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shakeel, K.; Lupas, A.A.; Abbas, M.; Mohammed, P.O.; Abdullah, F.A.; Abdelwahed, M. Construction of Soliton Solutions of Time-Fractional Caudrey–Dodd–Gibbon–Sawada–Kotera Equation with Painlevé Analysis in Plasma Physics. Symmetry 2024, 16, 824. https://doi.org/10.3390/sym16070824
Shakeel K, Lupas AA, Abbas M, Mohammed PO, Abdullah FA, Abdelwahed M. Construction of Soliton Solutions of Time-Fractional Caudrey–Dodd–Gibbon–Sawada–Kotera Equation with Painlevé Analysis in Plasma Physics. Symmetry. 2024; 16(7):824. https://doi.org/10.3390/sym16070824
Chicago/Turabian StyleShakeel, Khadija, Alina Alb Lupas, Muhammad Abbas, Pshtiwan Othman Mohammed, Farah Aini Abdullah, and Mohamed Abdelwahed. 2024. "Construction of Soliton Solutions of Time-Fractional Caudrey–Dodd–Gibbon–Sawada–Kotera Equation with Painlevé Analysis in Plasma Physics" Symmetry 16, no. 7: 824. https://doi.org/10.3390/sym16070824
APA StyleShakeel, K., Lupas, A. A., Abbas, M., Mohammed, P. O., Abdullah, F. A., & Abdelwahed, M. (2024). Construction of Soliton Solutions of Time-Fractional Caudrey–Dodd–Gibbon–Sawada–Kotera Equation with Painlevé Analysis in Plasma Physics. Symmetry, 16(7), 824. https://doi.org/10.3390/sym16070824