The Application of Multilinear Regression Model for Quantitative Analysis on the Basis of Excitation-Emission Matrix Spectra and the Release of a Free Graphical User Interface
Abstract
:1. Introduction
2. Method and Experimental
2.1. Experimental
2.1.1. Chemicals and Instruments
2.1.2. Standard Solutions for Training and Prediction
2.2. Analytical Procedure
2.3. Eigenvalue Extraction
2.4. Principle of the Multiple Linear Regression Model
- (1)
- The null hypotheses and alternative hypotheses for raising the question.
- (2)
- Conditional on the null hypothesis, the construct statistic F.
- (3)
- According to sample information, calculate the value of statistics.
2.5. Model Validation
3. Results and Discussion
3.1. The Establishment of the Model
3.2. Model Optimization and Result Analysis
3.2.1. Model Optimization
3.2.2. Results Analysis
4. Graphical User Interface
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ndou, T.T.; Warner, I.M. Applications of multidimensional absorption and luminescence spectroscopies in analytical chemistry. Chem. Rev. 1991, 91, 493–507. [Google Scholar] [CrossRef]
- Gabor, R.S.; Baker, A.; McKnight, D.M.; Miller, M.P. Fluorescence indices and their interpretation. Aquat. Org. Matter Fluoresc. 2014, 303. [Google Scholar] [CrossRef]
- Kumar, K.; Mishra, A.K. Analysis of dilute aqueous multifluorophoric mixtures using excitation–emission matrix fluorescence (EEMF) and total synchronous fluorescence (TSF) spectroscopy: A comparative evaluation. Talanta 2013, 117, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Andrade-Eiroa, A.; Canle, M.; Cerda, V. Environmental applications of excitation-emission spectrofluorimetry: An in-depth review I. Appl. Spectrosc. Rev. 2013, 48, 1–49. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, H.; Yang, G.; He, K.; Sun, X.; Wang, Z.; Wang, D.; Qiu, J. Study of photodegradation kinetics of aflatoxins in cereals using trilinear component modeling of excitation-emission matrix fluorescence data. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 235, 118266. [Google Scholar] [CrossRef] [PubMed]
- Peng, N.; Wang, K.F.; Tu, N.Y.; Liu, Y.; Li, Z.L. Fluorescence regional integration combined with parallel factor analysis to quantify fluorescencent spectra for dissolved organic matter released from manure biochars. RSC Adv. 2020, 10, 31502–31510. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, X.G.; Wang, J.Y.; Liu, D.L.; Wei, Y.J. Time-resolved fluorescence and chemometrics-assisted excitation-emission fluorescence for qualitative and quantitative analysis of scopoletin and scopolin in Erycibe obtusifolia Benth. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 219, 96–103. [Google Scholar] [CrossRef]
- Hemmilá, I.; Mukkala, V.-M. Time-resolution in fluorometry technologies, labels, and applications in bioanalytical assays. Crit. Rev. Clin. Lab. Sci. 2001, 38, 441–519. [Google Scholar] [CrossRef]
- Zhang, T.; Tang, H.; Li, H. Chemometrics in laser-induced breakdown spectroscopy. J. Chemom. 2018, 32, e2983. [Google Scholar] [CrossRef]
- Alcaraz, M.R.; Morzan, E.; Sorbello, C.; Goicoechea, H.C.; Etchenique, R. Multiway analysis through direct excitation-emission matrix imaging. Anal. Chim. Acta 2018, 1032, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.-Y.; Wang, S.-T.; Wang, J.-Z.; Cheng, Q.; Wu, X.-J.; Kong, D.-M. Rapid detection of the authenticity and adulteration of sesame oil using excitation-emission matrix fluorescence and chemometric methods. Food Control 2020, 112, 107145. [Google Scholar] [CrossRef]
- Yin, X.-L.; Wu, H.-L.; Gu, H.-W.; Hu, Y.; Xia, H.; Wang, L.; Yu, R.-Q. Second-order calibration method applied to process three-way excitation–emission-kinetic fluorescence data: A novel tool for real-time quantitative analysis of the lactone hydrolysis of irinotecan in human plasma. Chemom. Intell. Lab. Syst. 2015, 146, 447–456. [Google Scholar] [CrossRef]
- Vosough, M.; Eshlaghi, S.N.; Zadmard, R. On the performance of multiway methods for simultaneous quantification of two fluoroquinolones in urine samples by fluorescence spectroscopy and second-order calibration strategies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 136 Pt B, 618–624. [Google Scholar] [CrossRef]
- Perez, A.L.; Tibaldo, G.; Sanchez, G.H.; Siano, G.G.; Marsili, N.R.; Schenone, A.V. A novel fluorimetric method for glyphosate and AMPA determination with NBD-Cl and MCR-ALS. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 214, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Zhang, Y.; Yang, Q.; Chen, N.; Du, W.; Tang, L.J.; Jiang, J.H.; Yu, R.Q. A novel algorithm for second-order calibration of three-way data in fluorescence assays of multiple breast cancer-related DNAs. Talanta 2019, 195, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.M.; Liu, T.; Liu, D.L.; Wei, Y.J. Simultaneous determination of alpha-asarone and beta-asarone in Acorus tatarinowii using excitation-emission matrix fluorescence coupled with chemometrics methods. Spectrochim. Acta Part. A-Mol. Biomol. Spectrosc. 2018, 191, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Zareef, M.; Chen, Q.; Ouyang, Q.; Kutsanedzie, F.Y.H.; Hassan, M.M.; Viswadevarayalu, A.; Wang, A. Prediction of amino acids, caffeine, theaflavins and water extract in black tea using FT-NIR spectroscopy coupled chemometrics algorithms. Anal. Methods 2018, 10, 3023–3031. [Google Scholar] [CrossRef]
- Amneh, A.A.-M. Application of Moving Average Filter for the Quantitative Analysis of the NIR Spectra. J. Anal. Chem. 2019, 74, 686–692. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, J.; Jin, H.; Zhang, J.; Wang, Y. Quantitative Analysis in Combination with Fingerprint Technology and Chemometric Analysis Applied for Evaluating Six Species of Wild Paris Using UHPLC-UV-MS. J. Anal. Methods Chem. 2016, 2016, 3182796. [Google Scholar] [CrossRef] [PubMed]
- Li, B.Q.; Chen, J.; Li, J.J.; Wang, X.; Zhai, H.L.; Zhang, X.Y. High-performance liquid chromatography with photodiode array detection and chemometrics method for the analysis of multiple components in the traditional Chinese medicine Shuanghuanglian oral liquid. J. Sep. Sci. 2015, 38, 4187–4195. [Google Scholar] [CrossRef] [PubMed]
- Jing, Z.-B.; Wang, W.-L.; Nong, Y.-J.; Zhu, P.; Lu, Y.; Wu, Q.-Y. Fluorescence analysis for water characterization: Measurement processes, influencing factors, and data analysis. Water Reuse 2023, 13, 33–50. [Google Scholar]
- Nie, J.-F.; Wu, H.-L.; Wang, J.-Y.; Liu, Y.-J.; Yu, R.-Q. The chemical rank estimation for excitation-emission matrix fluorescence data by region-based moving window subspace projection technique and Monte Carlo simulation. Chemom. Intell. Lab. Syst. 2010, 104, 271–280. [Google Scholar] [CrossRef]
- Wu, H.-L.; Wang, T.; Yu, R.-Q. Recent advances in chemical multi-way calibration with second-order or higher-order advantages: Multilinear models, algorithms, related issues and applications. Trends Anal. Chem. 2020, 130, 115954. [Google Scholar] [CrossRef]
- Hu, L.; Yin, C. Multi-way calibration coupling with fluorescence spectroscopy to determine magnolol and honokiol in herb and plasma samples. Anal. Methods 2015, 7, 5913–5923. [Google Scholar] [CrossRef]
- Jones, D.M.; Watton, J.; Brown, K.J. Comparison of hot rolled steel mechanical property prediction models using linear multiple regression, non-linear multiple regression and non-linear artificial neural networks. Ironmak. Steelmak. 2013, 32, 435–442. [Google Scholar] [CrossRef]
- Yuan, L.; Li, L.; Zhang, T.; Chen, L.; Liu, W.; Hu, S.; Yang, L. Modeling Soil Moisture from Multisource Data by Stepwise Multilinear Regression: An Application to the Chinese Loess Plateau. ISPRS Int. J. Geo-Inf. 2021, 10, 233. [Google Scholar] [CrossRef]
- Kim, K.H.; Chao, S.K.; Hardle, W.K. Simultaneous inference of the partially linear model with a multivariate unknown function. J. Stat. Plan. Inference 2021, 213, 93–105. [Google Scholar] [CrossRef]
- Luepsen, H. ANOVA with binary variables: The F-test and some alternatives. Commun. Stat.-Simul. Comput. 2023, 52, 745–769. [Google Scholar] [CrossRef]
- Zhang, W.; Li, N.; Feng, Y.; Su, S.; Li, T.; Liang, B. A unique quantitative method of acid value of edible oils and studying the impact of heating on edible oils by UV-Vis spectrometry. Food Chem. 2015, 185, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Alsaqr, A.M. Remarks on the use of Pearson’s and Spearman’s correlation coefficients in assessing relationships in ophthalmic data. Afr. Vis. Eye Health 2021, 80, 10. [Google Scholar] [CrossRef]
- Mishra, P. CT-GUI: A graphical user interface to perform calibration transfer for multivariate calibrations. Chemom. Intell. Lab. Syst. 2021, 214, 104338. [Google Scholar] [CrossRef]
A | B | …… | pre | |
---|---|---|---|---|
Group 1 | …… | |||
Group 2 | …… | |||
… | ||||
… | ||||
… | …… | |||
… | ||||
Group 23 |
Sample No. | Predicted/μg mL−1 | Real/μg mL−1 | ||
---|---|---|---|---|
Magnolol | Honokiol | Magnolol | Honokiol | |
1 | 28.68 | 27.56 | 27.00 | 26.00 |
2 | 45.55 | 52.88 | 40.50 | 66.50 |
3 | 49.13 | 46.50 | 54.00 | 47.88 |
7 | 22.79 | 27.84 | 24.30 | 23.94 |
13 | 48.75 | 54.70 | 51.30 | 55.86 |
Sample | Predicted/μg mL−1 | Real/μg mL−1 | ||
---|---|---|---|---|
Magnolol | Honokiol | Magnolol | Honokiol | |
1 | 25.51 | 29.23 | 27.00 | 26.00 |
2 | 46.96 | 54.33 | 40.50 | 66.50 |
3 | 51.22 | 47.58 | 54.00 | 47.88 |
7 | 20.50 | 29.23 | 24.30 | 23.94 |
13 | 50.92 | 56.05 | 51.30 | 55.86 |
Parameters | Magnolol | Honokiol |
---|---|---|
Rp RMSREP | 0.96319 3.2474 | 0.99637 2.229 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Chen, Z.; Tang, L.; Guo, J.; Li, B. The Application of Multilinear Regression Model for Quantitative Analysis on the Basis of Excitation-Emission Matrix Spectra and the Release of a Free Graphical User Interface. Symmetry 2024, 16, 922. https://doi.org/10.3390/sym16070922
Li X, Chen Z, Tang L, Guo J, Li B. The Application of Multilinear Regression Model for Quantitative Analysis on the Basis of Excitation-Emission Matrix Spectra and the Release of a Free Graphical User Interface. Symmetry. 2024; 16(7):922. https://doi.org/10.3390/sym16070922
Chicago/Turabian StyleLi, Xinkang, Zirui Chen, Lijun Tang, Jingjing Guo, and Baoqiong Li. 2024. "The Application of Multilinear Regression Model for Quantitative Analysis on the Basis of Excitation-Emission Matrix Spectra and the Release of a Free Graphical User Interface" Symmetry 16, no. 7: 922. https://doi.org/10.3390/sym16070922
APA StyleLi, X., Chen, Z., Tang, L., Guo, J., & Li, B. (2024). The Application of Multilinear Regression Model for Quantitative Analysis on the Basis of Excitation-Emission Matrix Spectra and the Release of a Free Graphical User Interface. Symmetry, 16(7), 922. https://doi.org/10.3390/sym16070922