Degree of Lp Approximation Using Activated Singular Integrals
Abstract
:1. Introduction
2. Essential Background
3. Basics of Activation Functions
3.1. On Richards’s Curve
3.2. On the q-Deformed and -Parametrized Hyperbolic Tangent Function
3.3. On the Gudermannian Generated Activation Function
3.4. On the q-Deformed and -Parametrized Logistic Type Activation Function
3.5. On the q-Deformed and -Parametrized Half Hyperbolic Tangent Function
4. More on Activation Probability Measures
5. Main Results
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anastassiou, G.A.; Gal, S. Convergence of generalized singular integrals to the unit, univariate case. Math. Inequalities Appl. 2000, 3, 511–518. [Google Scholar] [CrossRef]
- Gal, S.G. Remark on the degree of approximation of continuous functions by singular integrals. Math. Nachrichten 1993, 164, 197–199. [Google Scholar] [CrossRef]
- Gal, S.G. Degree of approximation of continuous functions by some singular integrals. Rev. Anal. Numér. Théor. Approx. 1998, 27, 251–261. [Google Scholar]
- Mohapatra, R.N.; Rodriguez, R.S. On the rate of convergence of singular integrals for Hölder continuous functions. Math. Nachrichten 1990, 149, 117–124. [Google Scholar] [CrossRef]
- Anastassiou, G.; Mezei, R. Approximation by Singular Integrals; Cambridge Scientific Publishers: Cambridge, UK, 2012. [Google Scholar]
- Anastassiou, G.A. Banach Space Valued Neural Network; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2023. [Google Scholar]
- Anastassiou, G.A. Parametrized, Deformed and General Neural Networks; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2023. [Google Scholar]
- Aral, A. On a generalized Gauss Weierstrass singular integral. Fasc. Math. 2005, 35, 23–33. [Google Scholar]
- Aral, A. Pointwise approximation by the generalization of Picard and Gauss-Weierstrass singular integrals. J. Concr. Appl. Math. 2008, 6, 327–339. [Google Scholar]
- Aral, A. On generalized Picard integral operators. In Advances in Summability and Approximation Theory; Springer: Singapore, 2018; pp. 157–168. [Google Scholar]
- Aral, A.; Deniz, E.; Erbay, H. The Picard and Gauss-Weiertrass singular integrals in (p,q)-calculus. Bull. Malays. Math. Sci. Soc. 2020, 43, 1569–1583. [Google Scholar] [CrossRef]
- Aral, A.; Gal, S.G. q-generalizations of the Picard and Gauss-Weierstrass singular integrals. Taiwan. J. Math. 2008, 12, 2501–2515. [Google Scholar] [CrossRef]
- DeVore, R.A.; Lorentz, G.G. Constructive Approximation; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1993; Volume 303. [Google Scholar]
- Anastassiou, G.A. Quantitative Uniform Approximation by Activated Singular Operators. Mathematics 2023, 12, 2152. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anastassiou, G.A. Degree of Lp Approximation Using Activated Singular Integrals. Symmetry 2024, 16, 1022. https://doi.org/10.3390/sym16081022
Anastassiou GA. Degree of Lp Approximation Using Activated Singular Integrals. Symmetry. 2024; 16(8):1022. https://doi.org/10.3390/sym16081022
Chicago/Turabian StyleAnastassiou, George A. 2024. "Degree of Lp Approximation Using Activated Singular Integrals" Symmetry 16, no. 8: 1022. https://doi.org/10.3390/sym16081022
APA StyleAnastassiou, G. A. (2024). Degree of Lp Approximation Using Activated Singular Integrals. Symmetry, 16(8), 1022. https://doi.org/10.3390/sym16081022