A Multi-Criteria Method Integrating Distances to Ideal and Anti-Ideal Points
Abstract
:1. Introduction
2. Multi-Criteria Methods Based on Reference Points—A Short Overview
3. A Multi-Criteria Method Integrating Distances to Ideal and Anti-Ideal Points
4. Numerical Examples
4.1. Full Consistency of Ranking for D(α) and Different Coefficient
4.2. Partial Consistency of Ranking for D(α) and Different Coefficients α
4.3. No Consistency of Ranking D(α) Measure for Different Coefficients α
5. Application of the MIDIA Method in the Education Area
5.1. Problem and Data Description
5.2. Results
6. Discussion
- TOPSIS is a method based on the concept of the distance to the ideal solution and the anti-ideal solution. VIKOR is a compromise ranking method that also considers the distance to ideal and anti-ideal solutions, but introduces compromise ranking based on preference and satisfaction measures. MIDIA is a method based on the concept of weighted distance to the ideal solution and the anti-ideal solution.
- The TOPSIS method focuses on the Euclidean distance to the ideal and anti-ideal solutions. At the same time, VIKOR uses compromise measures that consider both the sum of weighted deviations and the maximum weighted deviation. The MIDIA method, similarly to TOPSIS, focuses on the Euclidean distance to the ideal and anti-ideal solutions, but by implementing coefficients, it allows for balancing and considering the asymmetry in the importance of these distances.
- TOPSIS offers a simple ranking based on the closeness coefficient. In the case of VIKOR, the ranking process is more complex, considering various compromise measures, which can lead to different solutions depending on the model parameters. Similarly, in MIDIA, the final ranking depends on the coefficients, reflecting the relative importance of the distances to the ideal and anti-ideal solutions.
- TOPSIS is ideal for situations where decision-maker preferences are clear and the goal is to find the solution closest to the ideal. On the other hand, VIKOR is better suited for cases where a compromise solution is needed, considering different aspects of decision-maker satisfaction. By introducing coefficients, MIDIA can tailor the decision-making process to reflect varied preferences regarding the importance of the distances to the ideal and anti-ideal points. This method can introduce more flexibility and balance in the evaluation.
7. Conclusions and Further Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MCDM | Multi-criteria decision-making |
DM | Decision maker |
VIKOR | VlseKriterijuska Optimizacija I Komoromisno Resenje |
TOPSIS | Technique for Ordering Preferences by Similarity to Ideal Solution |
MIDIA | A Multi-Criteria Method Integrating Distances to Ideal and Anti-ideal Points |
References
- Amor, S.B.; Belaid, F.; Benkraiem, R.; Ramdani, B.; Guesmi, K. Multi-Criteria Classification, Sorting, and Clustering: A Bibliometric Review and Research Agenda. Ann. Oper. Res. 2023, 325, 771–793. [Google Scholar] [CrossRef]
- Greco, S.; Ehrgott, M.; Figueira, J.R. (Eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, 2nd ed.; International Series in Operations Research & Management Science; Springer: New York, NY, USA, 2016; ISBN 978-1-4939-3093-7. [Google Scholar]
- Triantaphyllou, E. Multi-Criteria Decision Making Methods: A Comparative Study; Applied Optimization; Springer: Boston, MA, USA, 2000; Volume 44, ISBN 978-1-4419-4838-0. [Google Scholar]
- Ferreira, F.A.F.; Ilander, G.O.P.-B.; Ferreira, J.J.M. MCDM/A in Practice: Methodological Developments and Real-World Applications. Manag. Decis. 2019, 57, 295–299. [Google Scholar] [CrossRef]
- Hellwig, Z. Wielowymiarowa Analiza Porównawcza i Jej Zastosowanie w Badaniach Wielocechowych Obiektów Gospodarczych [Multivariate Comparative Analysis and Its Application in Multi-Criteria Research of Economic Objects]. In Metody i Modele Ekonomiczno-Matematyczne w Doskonaleniu Zarządzania Gospodarką Socjalistyczną; PWE: Warszawa, Poland, 1981; pp. 46–68. [Google Scholar]
- Hellwig, Z. Zastosowanie Metody Taksonomicznej Do Typologicznego Podziału Krajów Ze Względu Na Poziom Ich Rozwoju Oraz Zasoby i Strukturę Wykwalifikowanych Kadr [Application of the Taxonomic Method to the Typological Division of Countries According to the Level of Their Development and the Resources and Structure of Qualified Personnel]. Przegląd Stat. 1968, 4, 307–326. [Google Scholar]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making-Methods and Applications: A State-of-the-Art Survey; Springer: New York, NY, USA, 1981. [Google Scholar]
- Konarzewska-Gubała, E. Bipolar: Multiple Criteria Decision Aid Using Bipolar Reference System; Cahier et Documents; LAMSADE: Paris, France, 1989; Volume 56. [Google Scholar]
- Opricovic, S.; Tzeng, G.-H. Compromise Solution by MCDM Methods: A Comparative Analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. [Google Scholar] [CrossRef]
- Roszkowska, E.; Filipowicz-Chomko, M.; Wachowicz, T. Using Individual and Common Reference Points to Measure the Performance of Alternatives in Multiple Criteria Evaluation. Oper. Res. Decis. 2020, 30, 77–96. [Google Scholar] [CrossRef]
- Skulimowski, A.M.J. Methods of Multicriteria Decision Support Based on Reference Sets. In Advances in Multiple Objective and Goal Programming. Lecture Notes in Economic and Mathematical Systems; Caballero, R., Ruiz, F., Steuer, R., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; Volume 455, pp. 282–290. [Google Scholar]
- Wachowicz, T.; Brzostowski, J.; Roszkowska, E. Reference Points-Based Methods in Supporting the Evaluation of Negotiation Offers. Oper. Res. Decis. 2012, 22, 122–137. [Google Scholar]
- Liang, G.-S. Fuzzy MCDM Based on Ideal and Anti-Ideal Concepts. Eur. J. Oper. Res. 1999, 112, 682–691. [Google Scholar] [CrossRef]
- Zeleny, M. Multiple Criteria Decision Making; McGraw-Hill: New York, NY, USA, 1982; ISBN 978-0-07-072795-3. [Google Scholar]
- Zelany, M. A Concept of Compromise Solutions and the Method of the Displaced Ideal. Comput. Oper. Res. 1974, 1, 479–496. [Google Scholar] [CrossRef]
- Chen, T.-Y. A Comparative Study of Optimistic and Pessimistic Multicriteria Decision Analysis Based on Atanassov Fuzzy Sets. Appl. Soft Comput. 2012, 12, 2289–2311. [Google Scholar] [CrossRef]
- Hurwicz, L. The Generalized Bayes-Minimax Principle: A Criterion for Decision-Making Under Uncertainty. Cowles Comm. Discuss. Paper Stat. 1951, 335, 1950. [Google Scholar]
- Behzadian, M.; Khanmohammadi Otaghsara, S.; Yazdani, M.; Ignatius, J. A State-of the-Art Survey of TOPSIS Applications. Expert. Syst. Appl. 2012, 39, 13051–13069. [Google Scholar] [CrossRef]
- Palczewski, K.; Sałabun, W. The Fuzzy TOPSIS Applications in the Last Decade. Procedia Comput. Sci. 2019, 159, 2294–2303. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Mardani, A.; Turskis, Z.; Jusoh, A.; Nor, K.M. Development of TOPSIS Method to Solve Complicated Decision-Making Problems—An Overview on Developments from 2000 to 2015. Int. J. Inf. Technol. Decis. Mak. 2016, 15, 645–682. [Google Scholar] [CrossRef]
- Zyoud, S.H.; Fuchs-Hanusch, D. A Bibliometric-Based Survey on AHP and TOPSIS Techniques. Expert. Syst. Appl. 2017, 78, 158–181. [Google Scholar] [CrossRef]
- Yazdani, M.; Graeml, F. VIKOR and Its Applications: A State-of-the-Art Survey. Int. J. Strateg. Decis. Sci. 2014, 5, 56–83. [Google Scholar] [CrossRef]
- Jefmański, B. Intuitionistic Fuzzy Synthetic Measure for Ordinal Data. In Proceedings of the Conference of the Section on Classification and Data Analysis of the Polish Statistical Association; Springer: Berlin/Heidelberg, Germany, 2019; pp. 53–72. [Google Scholar]
- Jefmański, B.; Roszkowska, E.; Kusterka-Jefmańska, M. Intuitionistic Fuzzy Synthetic Measure on the Basis of Survey Responses and Aggregated Ordinal Data. Entropy 2021, 23, 1636. [Google Scholar] [CrossRef]
- Kusterka-Jefmańska, M.; Jefmański, B.; Roszkowska, E. Application of the Intuitionistic Fuzzy Synthetic Measure in the Subjective Quality of Life Measurement Based on Survey Data. In Proceedings of the Conference of the Section on Classification and Data Analysis of the Polish Statistical Association; Springer: Berlin/Heidelberg, Germany, 2022; pp. 243–261. [Google Scholar]
- Roszkowska, E. The Intuitionistic Fuzzy Framework for Evaluation and Rank Ordering the Negotiation Offers. In Intelligent and Fuzzy Techniques for Emerging Conditions and Digital Transformation. INFUS 2021; Lecture Notes in Networks and Systems; Kahraman, C., Cebi, S., Onar, S., Oztaysi, B., Tolga, A.C., Sari, I.U., Eds.; Springer: Cham, Switzerland, 2021; Volume 308, pp. 58–65. [Google Scholar]
- Roszkowska, E.; Wachowicz, T.; Filipowicz-Chomko, M.; \Lyczkowska-Hanćkowiak, A. The Extended Linguistic Hellwig’s Methods Based on Oriented Fuzzy Numbers and Their Application to the Evaluation of Negotiation Offers. Entropy 2022, 24, 1617. [Google Scholar] [CrossRef] [PubMed]
- Roszkowska, E.; Filipowicz-Chomko, M. Measuring Sustainable Development Using an Extended Hellwig Method: A Case Study of Education. Social. Indic. Res. 2021, 153, 299–322. [Google Scholar] [CrossRef]
- Dehnel, G.; Walesiak, M. A Comparative Analysis of Economic Efficiency of Medium-Sized Manufacturing Enterprises in Districts of Wielkopolska Province Using the Hybrid Approach with Metric and Interval-Valued Data. Stat. Transit. New Ser. 2019, 20, 49–68. [Google Scholar] [CrossRef]
- Roszkowska, E.; Jefmański, B.; Kusterka-Jefmańska, M. On Some Extension of Intuitionistic Fuzzy Synthetic Measures for Two Reference Points and Entropy Weights. Entropy 2022, 24, 1081. [Google Scholar] [CrossRef]
- Walesiak, M.; Dehnel, G. Evaluation of Economic Efficiency of Small Manufacturing Enterprises in Districts of Wielkopolska Province Using Interval-Valued Symbolic Data and the Hybrid Approach. In Proceedings of the 12th Professor Aleksander Zeliaś International Conference on Modelling and Forecasting of Socio-Economic Phenomena, Cracow, Poland, 8–11 May 2018; Conference Proceedings. Foundation of the Cracow University of Economics: Cracow, Poland, 2018; pp. 563–572. [Google Scholar]
- Walesiak, M.; Dehnel, G. The Measurement of Social Cohesion at Province Level in Poland Using Metric and Interval-Valued Data. Sustainability 2020, 12, 7664. [Google Scholar] [CrossRef]
- Trzaskalik, T.; Sitarz, S.; Dominiak, C. Unified Procedure for Bipolar Method. In Proceedings of the 12th International Symposium on Operational Research, Slovenian Society Informatika—Section for Operational Research, Dolenjske Toplice, Slovenia, 25–27 September 2013; pp. 213–218. [Google Scholar]
- Trzaskalik, T.; Sitarz, S.; Dominiak, C. Bipolar Method and Its Modifications. Cent. Eur. J. Oper. Res. 2019, 27, 625–651. [Google Scholar] [CrossRef]
- Trzaskalik, T. Bipolar Sorting and Ranking of Multistage Alternatives. Cent. Eur. J. Oper. Res. 2021, 29, 933–955. [Google Scholar] [CrossRef]
- Trzaskalik, T. Vectors of Indicators and Pointer Function in the Multistage Bipolar Method. Cent. Eur. J. Oper. Res. 2023, 31, 791–816. [Google Scholar] [CrossRef]
- Górecka, D. Bipolar Mix—A Method for Mixed Evaluations and Its Application to the Ranking of European Projects. Muliple Criteria Decis. Mak. 2017, 12, 36–48. [Google Scholar] [CrossRef]
- Górecka, D. Using Bipolar Mix in the Process of Selecting Projects Applying for Co-Financing from the European Union. In Proceedings of the 14th International Symposium on Operational Research SOR, Bled, Slovenia, 27–29 September 2017; Volume 17, pp. 174–179. [Google Scholar]
- Górecka, D. Decision-Making for Projects Realization/Support: Approach Based on Stochastic Dominance Rules Versus Multi-Actor Multi-Criteria Analysis. In Proceedings of the Operations Research Proceedings 2019: Selected Papers of the Annual International Conference of the German Operations Research Society (GOR), Dresden, Germany, 4–6 September 2019; Springer: Berlin/Heidelberg, Germany, 2020; pp. 149–155. [Google Scholar]
- Tłuczak, A. Zastosowanie Metody Bipolar Na Przykładzie Problemu Wyboru Dostawcy Usług Logistycznych. Metod. Ilościowe W Badaniach Ekon. 2018, 19, 293–302. [Google Scholar] [CrossRef]
- da Silva, F.F.; Souza, C.L.M.; Silva, F.F.; Costa, H.G.; da Hora, H.R.M.; Erthal, M., Jr. Elicitation of Criteria Weights for Multicriteria Models: Bibliometrics, Typologies, Characteristics and Applications. Braz. J. Oper. Prod. Manag. 2021, 18, 1–28. [Google Scholar] [CrossRef]
- Ahn, B.S.; Park, K.S. Comparing Methods for Multiattribute Decision Making with Ordinal Weights. Comput. Oper. Res. 2008, 35, 1660–1670. [Google Scholar] [CrossRef]
- Ayan, B.; Abacıoğlu, S.; Basilio, M.P. A Comprehensive Review of the Novel Weighting Methods for Multi-Criteria Decision-Making. Information 2023, 14, 285. [Google Scholar] [CrossRef]
- Choo, E.U.; Schoner, B.; Wedley, W.C. Interpretation of Criteria Weights in Multicriteria Decision Making. Comput. Ind. Eng. 1999, 37, 527–541. [Google Scholar] [CrossRef]
- Roszkowska, E. Rank Ordering Criteria Weighting Methods—A Comparative Overview. Optimum. Econ. Stud. 2013, 5, 14–33. [Google Scholar] [CrossRef]
- Zardari, N.H.; Ahmed, K.; Shirazi, S.M.; Yusop, Z.B. Weighting Methods and Their Effects on Multi-Criteria Decision Making Model Outcomes in Water Resources Management; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Tzeng, G.-H.; Chen, T.-Y.; Wang, J.-C. A Weight-Assessing Method with Habitual Domains. Eur. J. Oper. Res. 1998, 110, 342–367. [Google Scholar] [CrossRef]
- Diakoulaki, D.; Mavrotas, G.; Papayannakis, L. Determining Objective Weights in Multiple Criteria Problems: The Critic Method. Comput. Oper. Res. 1995, 22, 763–770. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, Y. The Maximizing Deviation Method for Group Multiple Attribute Decision Making under Linguistic Environment. Fuzzy Sets Syst. 2007, 158, 1608–1617. [Google Scholar] [CrossRef]
- Ma, J.; Fan, Z.-P.; Huang, L.-H. A Subjective and Objective Integrated Approach to Determine Attribute Weights. Eur. J. Oper. Res. 1999, 112, 397–404. [Google Scholar] [CrossRef]
- Stillwell, W.G.; Seaver, D.A.; Edwards, W. A Comparison of Weight Approximation Techniques in Multiattribute Utility Decision Making. Organ. Behav. Hum. Perform. 1981, 28, 62–77. [Google Scholar] [CrossRef]
- Keeney, R.L.; Raiffa, H. Decisions with Multiple Objectives: Preferences and Value Tradeoffs; Wiley: Chichester, UK, 1976. [Google Scholar]
- Edwards, W. How to Use Multiattribute Utility Measurement for Social Decisionmaking. IEEE Trans. Syst. Man Cybern. 1977, 7, 326–340. [Google Scholar] [CrossRef]
- Von Winterfeldt, D.; Edwards, W. Decision Analysis and Behavioral Research; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Edwards, W.; Barron, F.H. SMARTS and SMARTER: Improved Simple Methods for Multiattribute Utility Measurement. Organ. Behav. Hum. Decis. Process. 1994, 60, 306–325. [Google Scholar] [CrossRef]
- Bottomley, P.A.; Doyle, J.R.; Green, R.H. Testing the Reliability of Weight Elicitation Methods: Direct Rating versus Point Allocation. J. Mark. Res. 2000, 37, 508–513. [Google Scholar] [CrossRef]
- Bottomley, P.A.; Doyle, J.R. A Comparison of Three Weight Elicitation Methods: Good, Better, and Best. Omega 2001, 29, 553–560. [Google Scholar] [CrossRef]
- Doyle, J.R.; Green, R.H.; Bottomley, P.A. Judging Relative Importance: Direct Rating and Point Allocation Are Not Equivalent. Organ. Behav. Hum. Decis. Process. 1997, 70, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw Hill: New York, NY, USA, 1980. [Google Scholar]
- Gabus, A.; Fontela, E. World Problems, an Invitation to Further Thought within the Framework of DEMATEL; Battelle Geneva Research Center: Geneva, Switzerland, 1972; Volume 1, pp. 12–14. [Google Scholar]
- de Almeida, A.T.; de Almeida, J.A.; Costa, A.P.C.S.; de Almeida-Filho, A.T. A New Method for Elicitation of Criteria Weights in Additive Models: Flexible and Interactive Tradeoff. Eur. J. Oper. Res. 2016, 250, 179–191. [Google Scholar] [CrossRef]
- Siskos, E.; Tsotsolas, N. Elicitation of Criteria Importance Weights through the Simos Method: A Robustness Concern. Eur. J. Oper. Res. 2015, 246, 543–553. [Google Scholar] [CrossRef]
- Milani, A.S.; Shanian, A.; Madoliat, R.; Nemes, J.A. The Effect of Normalization Norms in Multiple Attribute Decision Making Models: A Case Study in Gear Material Selection. Struct. Multidiscip. Optim. 2005, 29, 312–318. [Google Scholar] [CrossRef]
- Palczewski, K.; Sałabun, W. Influence of Various Normalization Methods in PROMETHEE II: An Empirical Study on the Selection of the Airport Location. Procedia Comput. Sci. 2019, 159, 2051–2060. [Google Scholar] [CrossRef]
- Shih, H.-S.; Shyur, H.-J.; Lee, E.S. An Extension of TOPSIS for Group Decision Making. Math. Comput. Model. 2007, 45, 801–813. [Google Scholar] [CrossRef]
- Wang, Z.-X.; Wang, Y.-Y. Evaluation of the Provincial Competitiveness of the Chinese High-Tech Industry Using an Improved TOPSIS Method. Expert. Syst. Appl. 2014, 41, 2824–2831. [Google Scholar] [CrossRef]
- Roszkowska, E. Modifying Hellwig’s Method for Multi-Criteria Decision-Making with Mahalanobis Distance for Addressing Asymmetrical Relationships. Symmetry 2024, 16, 77. [Google Scholar] [CrossRef]
- Roszkowska, E.; Filipowicz-Chomko, M.; Łyczkowska-Hanćkowiak, A.; Majewska, E. Extended Hellwig’s Method Utilizing Entropy-Based Weights and Mahalanobis Distance: Applications in Evaluating Sustainable Development in the Education Area. Entropy 2024, 26, 197. [Google Scholar] [CrossRef]
- Chen, Y.; Kilgour, D.M.; Hipel, K.W. An Extreme-Distance Approach to Multiple Criteria Ranking. Math. Comput. Model. 2011, 53, 646–658. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Roszkowska, E.; Filipowicz-Chomko, M. Measuring Sustainable Development in the Education Area Using Multi-Criteria Methods: A Case Study. Cent. Eur. J. Oper. Res. 2020, 28, 1219–1241. [Google Scholar] [CrossRef]
- Ferguson, T.; Roofe, C.G. SDG 4 in Higher Education: Challanges and Opportunities. Int. J. Sustain. High. Educ. 2020, 21, 959–975. [Google Scholar] [CrossRef]
- European Commission; European Education and Culture Executive Agency. Learning for Sustainability in Europe: Building Competences and Supporting Teachers and Schools—Eurydice Report; Publications Office of the European Union: Luxembourg, 2024. [Google Scholar]
- Cinelli, M.; Coles, S.R.; Kirwan, K. Analysis of the Potentials of Multi Criteria Decision Analysis Methods to Conduct Sustainability Assessment. Ecol. Indic. 2014, 46, 138–148. [Google Scholar] [CrossRef]
- Diaz-Balteiro, L.; González-Pachón, J.; Romero, C. Measuring Systems Sustainability with Multi-Criteria Methods: A Critical Review. Eur. J. Oper. Res. 2017, 258, 607–616. [Google Scholar] [CrossRef]
- Dincă, M.S.; Dincă, G.; Andronic, M.L.; Pasztori, A.M. Assessment of the European Union’s Educational Efficiency. Sustainability 2021, 13, 3116. [Google Scholar] [CrossRef]
- Eurostat Database. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 1 July 2024).
- Anagnostopoulos, K.; Doukas, H.; Psarras, J. A Linguistic Multicriteria Analysis System Combining Fuzzy Sets Theory, Ideal and Anti-Ideal Points for Location Site Selection. Expert. Syst. Appl. 2008, 35, 2041–2048. [Google Scholar] [CrossRef]
Alternative | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
A1 | 16 | 50 | 98 | 20 | 64 |
A2 | 11 | 50 | 97 | 23 | 68 |
A3 | 17 | 29 | 90 | 23 | 70 |
A4 | 8 | 55 | 98 | 22 | 54 |
A5 | 11 | 43 | 91 | 18 | 56 |
A6 | 9 | 58 | 86 | 10 | 50 |
A7 | 18 | 44 | 82 | 5 | 49 |
A8 | 4 | 25 | 85 | 14 | 66 |
A9 | 6 | 35 | 80 | 8 | 59 |
A10 | 3 | 38 | 78 | 5 | 58 |
Maximum | 18 | 58 | 98 | 23 | 70 |
Minimum | 3 | 25 | 78 | 5 | 49 |
Median | 10.30 | 42.70 | 88.50 | 14.80 | 59.40 |
Standard Deviation | 5.06 | 10.37 | 7.10 | 6.97 | 7.00 |
Coefficient of variation | 49.13 | 24.29 | 8.03 | 47.08 | 11.79 |
Alternative | D(α) Values for Different Coefficients α | Max-Min | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | ||
A1 | 0.834 | 0.831 | 0.828 | 0.824 | 0.821 | 0.818 | 0.815 | 0.811 | 0.808 | 0.805 | 0.802 | 0.032 |
A2 | 0.833 | 0.825 | 0.817 | 0.809 | 0.801 | 0.793 | 0.785 | 0.776 | 0.768 | 0.760 | 0.752 | 0.081 |
A3 | 0.787 | 0.762 | 0.737 | 0.712 | 0.687 | 0.662 | 0.637 | 0.612 | 0.587 | 0.562 | 0.537 | 0.250 |
A4 | 0.747 | 0.726 | 0.705 | 0.683 | 0.662 | 0.641 | 0.619 | 0.598 | 0.577 | 0.555 | 0.534 | 0.213 |
A5 | 0.560 | 0.557 | 0.554 | 0.550 | 0.547 | 0.544 | 0.541 | 0.537 | 0.534 | 0.531 | 0.528 | 0.033 |
A6 | 0.560 | 0.540 | 0.519 | 0.499 | 0.478 | 0.458 | 0.437 | 0.417 | 0.396 | 0.376 | 0.355 | 0.205 |
A7 | 0.541 | 0.514 | 0.487 | 0.460 | 0.433 | 0.406 | 0.379 | 0.352 | 0.325 | 0.298 | 0.271 | 0.270 |
A8 | 0.449 | 0.430 | 0.412 | 0.393 | 0.374 | 0.356 | 0.337 | 0.318 | 0.300 | 0.281 | 0.262 | 0.187 |
A9 | 0.290 | 0.286 | 0.282 | 0.278 | 0.273 | 0.269 | 0.265 | 0.260 | 0.256 | 0.252 | 0.248 | 0.043 |
A10 | 0.275 | 0.264 | 0.252 | 0.241 | 0.229 | 0.217 | 0.206 | 0.194 | 0.182 | 0.171 | 0.159 | 0.116 |
Alternative | The Range for D(α) Measure and Different Coefficients α | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | |
A1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
A2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
A3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
A4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
A5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
A6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
A7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
A8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
A9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 |
A10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Pearson Coefficient | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 |
---|---|---|---|---|---|---|---|---|---|---|---|
0.0 | 1.000 | ||||||||||
0.1 | 0.999 | 1.000 | |||||||||
0.2 | 0.996 | 0.999 | 1.000 | ||||||||
0.3 | 0.991 | 0.996 | 0.999 | 1.000 | |||||||
0.4 | 0.984 | 0.991 | 0.996 | 0.999 | 1.000 | ||||||
0.5 | 0.976 | 0.984 | 0.991 | 0.996 | 0.999 | 1.000 | |||||
0.6 | 0.965 | 0.976 | 0.984 | 0.991 | 0.996 | 0.999 | 1.000 | ||||
0.7 | 0.953 | 0.965 | 0.976 | 0.985 | 0.991 | 0.996 | 0.999 | 1.000 | |||
0.8 | 0.939 | 0.954 | 0.966 | 0.977 | 0.985 | 0.992 | 0.996 | 0.999 | 1.000 | ||
0.9 | 0.924 | 0.940 | 0.954 | 0.967 | 0.977 | 0.986 | 0.992 | 0.997 | 0.999 | 1.000 | |
1.0 | 0.908 | 0.926 | 0.942 | 0.956 | 0.968 | 0.978 | 0.986 | 0.992 | 0.997 | 0.999 | 1.000 |
Alternative | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
A1 | 20.00 | 3.00 | 91.00 | 50.00 | 80.00 |
A2 | 16.00 | 50.00 | 100.00 | 11.00 | 62.00 |
A3 | 11.00 | 50.00 | 97.00 | 22.00 | 68.00 |
A4 | 10.00 | 100.00 | 85.00 | 10.00 | 50.00 |
A5 | 10.00 | 55.00 | 98.00 | 10.00 | 54.00 |
A6 | 12.00 | 43.00 | 92.00 | 18.00 | 56.00 |
A7 | 8.00 | 35.00 | 84.00 | 6.00 | 59.00 |
A8 | 4.00 | 30.00 | 89.00 | 15.00 | 43.00 |
A9 | 2.00 | 36.00 | 76.00 | 5.00 | 53.00 |
A10 | 13.00 | 45.00 | 79.00 | 4.00 | 5.00 |
Max | 20 | 100 | 100 | 50 | 80 |
Min | 2 | 3 | 76 | 4 | 5 |
Median | 10.60 | 44.70 | 89.10 | 15.10 | 53.00 |
Standard Deviation | 5.00 | 23.13 | 7.67 | 12.85 | 18.69 |
Coefficient of variation | 47.21 | 51.74 | 8.61 | 85.09 | 35.27 |
Alternative | D(α) Values for Different Coefficients α | Max-Min | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | ||
A1 | 0.812 | 0.779 | 0.745 | 0.712 | 0.678 | 0.644 | 0.611 | 0.577 | 0.544 | 0.510 | 0.477 | 0.336 |
A2 | 0.673 | 0.658 | 0.644 | 0.629 | 0.615 | 0.600 | 0.586 | 0.571 | 0.557 | 0.542 | 0.528 | 0.145 |
A3 | 0.638 | 0.630 | 0.623 | 0.615 | 0.608 | 0.600 | 0.593 | 0.585 | 0.578 | 0.570 | 0.563 | 0.075 |
A4 | 0.631 | 0.614 | 0.597 | 0.580 | 0.563 | 0.546 | 0.529 | 0.512 | 0.495 | 0.478 | 0.461 | 0.169 |
A5 | 0.575 | 0.565 | 0.554 | 0.544 | 0.533 | 0.523 | 0.512 | 0.501 | 0.491 | 0.480 | 0.470 | 0.106 |
A6 | 0.537 | 0.533 | 0.529 | 0.525 | 0.521 | 0.517 | 0.513 | 0.508 | 0.504 | 0.500 | 0.496 | 0.041 |
A7 | 0.430 | 0.420 | 0.410 | 0.400 | 0.390 | 0.381 | 0.371 | 0.361 | 0.351 | 0.341 | 0.331 | 0.099 |
A8 | 0.366 | 0.360 | 0.355 | 0.350 | 0.344 | 0.339 | 0.333 | 0.328 | 0.323 | 0.317 | 0.312 | 0.054 |
A9 | 0.353 | 0.337 | 0.322 | 0.306 | 0.290 | 0.275 | 0.259 | 0.243 | 0.228 | 0.212 | 0.196 | 0.157 |
A10 | 0.346 | 0.332 | 0.317 | 0.303 | 0.289 | 0.274 | 0.260 | 0.246 | 0.231 | 0.217 | 0.203 | 0.143 |
Alternative | The Range for D(α) Measure and Different Coefficients α | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | |
A1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 3 | 4 |
A2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 2 | 2 | 2 |
A3 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 1 |
A4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 6 | 6 |
A5 | 5 | 5 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 5 | 5 |
A6 | 6 | 6 | 6 | 6 | 6 | 6 | 5 | 5 | 4 | 4 | 3 |
A7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
A8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
A9 | 9 | 9 | 9 | 9 | 9 | 9 | 10 | 10 | 10 | 10 | 10 |
A10 | 10 | 10 | 10 | 10 | 10 | 10 | 9 | 9 | 9 | 9 | 9 |
Spearman Coefficient | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 |
---|---|---|---|---|---|---|---|---|---|---|---|
0.0 | 1.000 | ||||||||||
0.1 | 1.000 | 1.000 | |||||||||
0.2 | 1.000 | 1.000 | 1.000 | ||||||||
0.3 | 1.000 | 1.000 | 1.000 | 1.000 | |||||||
0.4 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | ||||||
0.5 | 0.988 | 0.988 | 0.988 | 0.988 | 0.988 | 1.000 | |||||
0.6 | 0.964 | 0.964 | 0.964 | 0.964 | 0.964 | 0.976 | 1.000 | ||||
0.7 | 0.939 | 0.939 | 0.939 | 0.939 | 0.939 | 0.964 | 0.988 | 1.000 | |||
0.8 | 0.903 | 0.903 | 0.903 | 0.903 | 0.903 | 0.915 | 0.952 | 0.976 | 1.000 | ||
0.9 | 0.891 | 0.891 | 0.891 | 0.891 | 0.891 | 0.903 | 0.927 | 0.952 | 0.988 | 1.000 | |
1.0 | 0.830 | 0.830 | 0.830 | 0.830 | 0.830 | 0.842 | 0.879 | 0.915 | 0.976 | 0.988 | 1.000 |
Pearson Coefficient | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 |
---|---|---|---|---|---|---|---|---|---|---|---|
0.0 | 1.000 | ||||||||||
0.1 | 0.999 | 1.000 | |||||||||
0.2 | 0.996 | 0.999 | 1.000 | ||||||||
0.3 | 0.990 | 0.995 | 0.999 | 1.000 | |||||||
0.4 | 0.980 | 0.988 | 0.995 | 0.999 | 1.000 | ||||||
0.5 | 0.968 | 0.978 | 0.987 | 0.994 | 0.998 | 1.000 | |||||
0.6 | 0.952 | 0.965 | 0.976 | 0.986 | 0.994 | 0.998 | 1.000 | ||||
0.7 | 0.932 | 0.947 | 0.962 | 0.974 | 0.985 | 0.993 | 0.998 | 1.000 | |||
0.8 | 0.908 | 0.926 | 0.943 | 0.959 | 0.973 | 0.984 | 0.993 | 0.998 | 1.000 | ||
0.9 | 0.880 | 0.901 | 0.921 | 0.939 | 0.956 | 0.971 | 0.983 | 0.992 | 0.998 | 1.000 | |
1.0 | 0.848 | 0.872 | 0.894 | 0.916 | 0.936 | 0.954 | 0.970 | 0.983 | 0.992 | 0.998 | 1.000 |
Alternative | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
A1 | 20.00 | 3.00 | 91.00 | 50.00 | 80.00 |
A2 | 16.00 | 50.00 | 100.00 | 11.00 | 62.00 |
A3 | 11.00 | 50.00 | 97.00 | 25.00 | 68.00 |
A4 | 10.00 | 100.00 | 85.00 | 10.00 | 50.00 |
A5 | 11.00 | 60.00 | 98.00 | 10.00 | 54.00 |
A6 | 20.00 | 35.00 | 84.00 | 6.00 | 59.00 |
A7 | 12.00 | 43.00 | 92.00 | 18.00 | 56.00 |
A8 | 2.00 | 36.00 | 76.00 | 5.00 | 53.00 |
A9 | 13.00 | 45.00 | 79.00 | 4.00 | 5.00 |
A10 | 4.00 | 20.00 | 80.00 | 15.00 | 43.00 |
Max | 20 | 100 | 100 | 50 | 80 |
Min | 2 | 3 | 76 | 4 | 5 |
Median | 11.90 | 44.20 | 88.20 | 15.40 | 53.00 |
Standard Deviation | 5.61 | 24.22 | 8.15 | 13.04 | 18.69 |
Coefficient of variation | 47.16 | 54.80 | 9.24 | 84.67 | 35.27 |
Alternative | D(α) Values for Different Coefficients α | Max-Min | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | ||
A1 | 0.815 | 0.782 | 0.748 | 0.714 | 0.681 | 0.647 | 0.613 | 0.580 | 0.546 | 0.513 | 0.479 | 0.336 |
A2 | 0.667 | 0.652 | 0.637 | 0.623 | 0.608 | 0.593 | 0.579 | 0.564 | 0.549 | 0.535 | 0.520 | 0.147 |
A3 | 0.651 | 0.644 | 0.637 | 0.631 | 0.624 | 0.617 | 0.610 | 0.603 | 0.597 | 0.590 | 0.583 | 0.068 |
A4 | 0.631 | 0.614 | 0.597 | 0.580 | 0.562 | 0.545 | 0.528 | 0.511 | 0.494 | 0.477 | 0.460 | 0.171 |
A5 | 0.595 | 0.584 | 0.573 | 0.563 | 0.552 | 0.541 | 0.530 | 0.520 | 0.509 | 0.498 | 0.487 | 0.108 |
A6 | 0.580 | 0.561 | 0.542 | 0.523 | 0.504 | 0.485 | 0.465 | 0.446 | 0.427 | 0.408 | 0.389 | 0.191 |
A7 | 0.537 | 0.533 | 0.529 | 0.525 | 0.520 | 0.516 | 0.512 | 0.508 | 0.504 | 0.499 | 0.495 | 0.042 |
A8 | 0.365 | 0.349 | 0.333 | 0.317 | 0.302 | 0.286 | 0.270 | 0.254 | 0.239 | 0.223 | 0.207 | 0.158 |
A9 | 0.332 | 0.317 | 0.303 | 0.288 | 0.274 | 0.260 | 0.245 | 0.231 | 0.217 | 0.202 | 0.188 | 0.144 |
A10 | 0.300 | 0.294 | 0.289 | 0.283 | 0.278 | 0.273 | 0.267 | 0.262 | 0.256 | 0.251 | 0.245 | 0.054 |
Alternative | Range for D(α) Measure and Different Coefficients α | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | |
A1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 3 | 5 |
A2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 2 |
A3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 |
A4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 6 | 6 | 6 |
A5 | 5 | 5 | 5 | 5 | 5 | 5 | 4 | 4 | 4 | 5 | 4 |
A6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
A7 | 7 | 7 | 7 | 6 | 6 | 6 | 6 | 6 | 5 | 4 | 3 |
A8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 9 | 9 | 9 | 9 |
A9 | 9 | 9 | 9 | 9 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
A10 | 10 | 10 | 10 | 10 | 9 | 9 | 9 | 8 | 8 | 8 | 8 |
Spearman Coefficient | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 |
---|---|---|---|---|---|---|---|---|---|---|---|
0.0 | 1.000 | ||||||||||
0.1 | 1.000 | 1.000 | |||||||||
0.2 | 1.000 | 1.000 | 1.000 | ||||||||
0.3 | 0.976 | 0.976 | 0.976 | 1.000 | |||||||
0.4 | 0.964 | 0.964 | 0.964 | 0.988 | 1.000 | ||||||
0.5 | 0.964 | 0.964 | 0.964 | 0.988 | 1.000 | 1.000 | |||||
0.6 | 0.952 | 0.952 | 0.952 | 0.976 | 0.988 | 0.988 | 1.000 | ||||
0.7 | 0.903 | 0.903 | 0.903 | 0.939 | 0.964 | 0.964 | 0.976 | 1.000 | |||
0.8 | 0.855 | 0.855 | 0.855 | 0.891 | 0.915 | 0.915 | 0.939 | 0.976 | 1.000 | ||
0.9 | 0.830 | 0.830 | 0.830 | 0.879 | 0.903 | 0.903 | 0.915 | 0.952 | 0.988 | 1.000 | |
1.0 | 0.709 | 0.709 | 0.709 | 0.770 | 0.794 | 0.794 | 0.818 | 0.879 | 0.952 | 0.964 | 1.000 |
Pearson Coefficient | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 |
---|---|---|---|---|---|---|---|---|---|---|---|
0.0 | 1.000 | ||||||||||
0.1 | 0.999 | 1.000 | |||||||||
0.2 | 0.996 | 0.999 | 1.000 | ||||||||
0.3 | 0.990 | 0.995 | 0.999 | 1.000 | |||||||
0.4 | 0.981 | 0.989 | 0.995 | 0.999 | 1.000 | ||||||
0.5 | 0.970 | 0.980 | 0.988 | 0.994 | 0.999 | 1.000 | |||||
0.6 | 0.954 | 0.967 | 0.978 | 0.987 | 0.994 | 0.998 | 1.000 | ||||
0.7 | 0.936 | 0.951 | 0.964 | 0.976 | 0.986 | 0.994 | 0.998 | 1.000 | |||
0.8 | 0.913 | 0.931 | 0.947 | 0.962 | 0.975 | 0.985 | 0.993 | 0.998 | 1.000 | ||
0.9 | 0.888 | 0.907 | 0.926 | 0.944 | 0.960 | 0.973 | 0.985 | 0.993 | 0.998 | 1.000 | |
1.0 | 0.858 | 0.880 | 0.902 | 0.922 | 0.941 | 0.958 | 0.972 | 0.984 | 0.993 | 0.998 | 1.000 |
Example | Properties |
---|---|
Example 1 | Full consistency of alternative positions in ranking for and different coefficients The rankings for all coefficients of the measures are identical. The Pearson correlation coefficient between the measures decreases as the difference between the coefficients increases. The lowest Pearson coefficient (0.908) is between and . |
Example 2 | Partial consistency of alternative positions in ranking for and different coefficients Regardless of the coefficient, some alternatives maintain a fixed position in the ranking, while the positions of others fluctuate. Specifically, alternatives A7, A8, A9, and A10 have constant positions, whereas the positions of the remaining alternatives vary across Notably, A1 can occupy positions 1, 2, 3, or 4, depending on the value of The lowest Spearman coefficient (0.830) and Pearson coefficient (0.848) is between and |
Example 3 | No consistency of alternative positions for and different coefficients No alternative retains a constant position regardless of the parameter. Notably, A1 can occupy positions 1, 2, 3, and 5 while A3 positions 3, 2, and 1 depending on the value of . The lowest Spearman coefficient (0.709) and Pearson coefficient (0.84) is between and and between and . The lowest Pearson coefficient (0.858) is between and . |
Indicator | Criterion Type | Description |
---|---|---|
C1: Early leavers from education and training (%) [sdg_04_10] | cost | C1 measures the share of the population aged 18 to 24 with at most lower secondary education who were not involved in any education or training during the four weeks preceding the survey. |
C2: Tertiary educational attainment (%) [sdg_04_20] | benefit | C2 measures the share of the population aged 25–34 who have successfully completed tertiary studies (e.g., university, higher technical institution, etc.). |
C3: Participation in early childhood education (%) [sdg_04_31] * | benefit | C3 measures the share of the children between the age of three and the starting age of compulsory primary education who participated in early childhood education and care (ECEC), which can be classified as ISCED level 0 according to the International Standard Classification for Education (ISCED 2011). |
C4: Adult participation in learning (%) [sdg_04_60] | benefit | C4 measures the share of people aged 25 to 64 who stated that they received formal or non-formal education and training in the four weeks preceding the survey (numerator). The denominator consists of the total population of the same age group, excluding those who did not answer the question on ‘participation in education and training’. |
C5: Share of individuals having at least basic digital skills (%) [sdg_04_70] | benefit | C5 measures the share of people aged 16 to 74 who have at least basic digital skills. It is a composite indicator based on selected activities performed by individuals on the internet in specific areas: information and data literacy, communication and collaboration, digital content creation, safety, and problem solving. |
C6: Low achieving 15-year-olds in reading (%) [sdg_04_40] ** | cost | C6-C8 measure the share of 15-year-old students failing to reach level 2 (‘basic skills level’) on the PISA scale for the three core school subjects of reading, mathematics, and science. The data stem from the Programme for International Student Assessment (PISA), a triennial international survey that aims to evaluate education systems by testing the skills and knowledge of 15-year-old students. |
C7: Low achieving 15-year-olds in mathematics (%) [sdg_04_40] ** | cost | |
C8: Low achieving 15-year-olds in science (%) [sdg_04_40] ** | cost |
EU Country | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
---|---|---|---|---|---|---|---|---|
Belgium | 6.40 | 51.40 | 98.30 | 10.30 | 54.23 | 25.30 | 25.00 | 22.40 |
Bulgaria | 10.30 | 34.00 | 80.40 | 1.60 | 31.18 | 52.90 | 53.60 | 48.00 |
Czechia | 6.20 | 34.60 | 85.30 | 9.40 | 59.69 | 21.30 | 25.50 | 19.90 |
Denmark | 10.00 | 49.00 | 97.10 | 27.90 | 68.65 | 19.00 | 20.40 | 19.50 |
Germany | 12.70 | 36.70 | 93.10 | 8.10 | 48.92 | 25.50 | 29.50 | 22.90 |
Estonia | 10.80 | 43.90 | 91.90 | 21.10 | 56.37 | 13.80 | 15.00 | 10.10 |
Ireland | 3.70 | 63.00 | 93.20 | 11.80 | 70.49 | 11.40 | 19.00 | 15.60 |
Greece | 4.10 | 45.20 | 68.80 | 3.50 | 52.48 | 37.60 | 47.20 | 37.30 |
Spain | 13.90 | 50.20 | 96.70 | 15.20 | 64.16 | 24.40 | 27.30 | 21.30 |
France | 7.60 | 50.40 | 100.00 | 13.30 | 61.96 | 26.90 | 28.80 | 23.80 |
Croatia | 2.30 | 35.50 | 83.50 | 4.40 | 63.37 | 22.70 | 32.90 | 22.40 |
Italy | 11.50 | 29.20 | 92.70 | 9.60 | 45.60 | 21.40 | 29.60 | 23.90 |
Cyprus | 8.10 | 59.20 | 84.40 | 10.50 | 50.21 | 60.60 | 53.20 | 51.80 |
Latvia | 6.70 | 45.90 | 95.50 | 9.70 | 50.80 | 22.80 | 22.20 | 16.50 |
Lithuania | 4.80 | 58.20 | 96.70 | 8.50 | 48.84 | 24.90 | 27.80 | 21.80 |
Luxembourg | 8.20 | 61.00 | 90.50 | 18.10 | 63.79 | 29.30 | 27.20 | 26.80 |
Hungary | 12.40 | 31.90 | 92.60 | 7.90 | 49.09 | 25.90 | 29.50 | 22.90 |
Malta | 10.30 | 42.50 | 87.50 | 13.00 | 61.23 | 36.30 | 32.60 | 30.30 |
Netherlands | 5.60 | 56.40 | 92.00 | 26.40 | 78.94 | 34.60 | 27.40 | 27.30 |
Austria | 8.40 | 43.10 | 90.60 | 15.80 | 63.33 | 25.30 | 24.90 | 22.70 |
Poland | 4.70 | 41.70 | 92.40 | 7.80 | 42.93 | 22.20 | 23.00 | 18.60 |
Portugal | 6.50 | 42.50 | 96.30 | 13.30 | 55.31 | 23.10 | 29.70 | 21.80 |
Romania | 15.60 | 24.70 | 74.80 | 5.40 | 27.82 | 41.70 | 48.60 | 44.00 |
Slovenia | 4.00 | 47.30 | 92.70 | 22.30 | 49.67 | 26.10 | 24.60 | 17.80 |
Slovakia | 7.40 | 39.10 | 78.60 | 12.80 | 55.18 | 35.40 | 33.20 | 30.60 |
Finland | 8.40 | 40.70 | 89.00 | 25.20 | 79.18 | 21.40 | 24.90 | 18.00 |
Sweden | 8.80 | 52.40 | 96.10 | 36.20 | 66.60 | 24.30 | 27.20 | 23.70 |
Max | 15.60 | 63.00 | 100.00 | 36.20 | 79.18 | 60.60 | 53.60 | 51.80 |
Min | 2.30 | 24.70 | 68.80 | 1.60 | 27.82 | 11.40 | 15.00 | 10.10 |
Median | 8.13 | 44.80 | 90.03 | 13.67 | 56.30 | 28.00 | 29.99 | 25.25 |
Standard Deviation | 3.27 | 9.74 | 7.40 | 8.09 | 11.88 | 10.54 | 9.57 | 9.57 |
Coefficient of variation | 40.00 | 21.74 | 8.22 | 59.18 | 21.10 | 37.65 | 31.91 | 37.90 |
Countries | D(α) Values for Different Coefficients α | Max-Min | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | ||
Belgium | 0.683 | 0.675 | 0.668 | 0.660 | 0.652 | 0.645 | 0.637 | 0.630 | 0.622 | 0.615 | 0.607 | 0.075 |
Bulgaria | 0.217 | 0.210 | 0.204 | 0.197 | 0.190 | 0.183 | 0.177 | 0.170 | 0.163 | 0.157 | 0.150 | 0.067 |
Czechia | 0.624 | 0.616 | 0.607 | 0.598 | 0.590 | 0.581 | 0.573 | 0.564 | 0.555 | 0.547 | 0.538 | 0.086 |
Denmark | 0.770 | 0.764 | 0.759 | 0.754 | 0.749 | 0.744 | 0.739 | 0.734 | 0.729 | 0.723 | 0.718 | 0.051 |
Germany | 0.550 | 0.540 | 0.531 | 0.521 | 0.512 | 0.502 | 0.493 | 0.483 | 0.474 | 0.465 | 0.455 | 0.095 |
Estonia | 0.757 | 0.745 | 0.733 | 0.721 | 0.709 | 0.696 | 0.684 | 0.672 | 0.660 | 0.648 | 0.636 | 0.120 |
Ireland | 0.847 | 0.835 | 0.822 | 0.809 | 0.797 | 0.784 | 0.772 | 0.759 | 0.747 | 0.734 | 0.721 | 0.126 |
Greece | 0.446 | 0.433 | 0.419 | 0.406 | 0.392 | 0.378 | 0.365 | 0.351 | 0.338 | 0.324 | 0.310 | 0.136 |
Spain | 0.662 | 0.652 | 0.642 | 0.633 | 0.623 | 0.613 | 0.603 | 0.593 | 0.583 | 0.573 | 0.564 | 0.098 |
France | 0.680 | 0.674 | 0.668 | 0.662 | 0.656 | 0.651 | 0.645 | 0.639 | 0.633 | 0.627 | 0.621 | 0.060 |
Croatia | 0.634 | 0.620 | 0.607 | 0.593 | 0.579 | 0.565 | 0.552 | 0.538 | 0.524 | 0.510 | 0.496 | 0.138 |
Italy | 0.553 | 0.542 | 0.531 | 0.520 | 0.508 | 0.497 | 0.486 | 0.474 | 0.463 | 0.452 | 0.440 | 0.113 |
Cyprus | 0.433 | 0.415 | 0.397 | 0.379 | 0.361 | 0.343 | 0.325 | 0.306 | 0.288 | 0.270 | 0.252 | 0.182 |
Latvia | 0.683 | 0.674 | 0.665 | 0.656 | 0.647 | 0.638 | 0.629 | 0.620 | 0.611 | 0.602 | 0.592 | 0.091 |
Lithuania | 0.695 | 0.684 | 0.674 | 0.663 | 0.653 | 0.642 | 0.632 | 0.621 | 0.611 | 0.600 | 0.590 | 0.105 |
Luxembourg | 0.668 | 0.665 | 0.661 | 0.658 | 0.655 | 0.651 | 0.648 | 0.645 | 0.641 | 0.638 | 0.635 | 0.033 |
Hungary | 0.540 | 0.530 | 0.520 | 0.510 | 0.499 | 0.489 | 0.479 | 0.469 | 0.459 | 0.449 | 0.438 | 0.102 |
Malta | 0.510 | 0.508 | 0.506 | 0.505 | 0.503 | 0.501 | 0.499 | 0.497 | 0.495 | 0.493 | 0.491 | 0.019 |
Netherlands | 0.736 | 0.731 | 0.726 | 0.722 | 0.717 | 0.713 | 0.708 | 0.703 | 0.699 | 0.694 | 0.689 | 0.046 |
Austria | 0.638 | 0.635 | 0.632 | 0.630 | 0.627 | 0.624 | 0.621 | 0.618 | 0.615 | 0.612 | 0.609 | 0.029 |
Poland | 0.657 | 0.645 | 0.633 | 0.622 | 0.610 | 0.598 | 0.586 | 0.574 | 0.563 | 0.551 | 0.539 | 0.118 |
Portugal | 0.652 | 0.646 | 0.641 | 0.635 | 0.629 | 0.624 | 0.618 | 0.613 | 0.607 | 0.602 | 0.596 | 0.056 |
Romania | 0.187 | 0.181 | 0.175 | 0.169 | 0.162 | 0.156 | 0.150 | 0.144 | 0.138 | 0.132 | 0.126 | 0.061 |
Slovenia | 0.702 | 0.698 | 0.694 | 0.690 | 0.685 | 0.681 | 0.677 | 0.673 | 0.669 | 0.665 | 0.661 | 0.041 |
Slovakia | 0.476 | 0.474 | 0.472 | 0.470 | 0.468 | 0.466 | 0.464 | 0.462 | 0.460 | 0.457 | 0.455 | 0.021 |
Finland | 0.734 | 0.728 | 0.722 | 0.716 | 0.709 | 0.703 | 0.697 | 0.691 | 0.685 | 0.679 | 0.672 | 0.062 |
Sweden | 0.760 | 0.756 | 0.751 | 0.747 | 0.742 | 0.738 | 0.733 | 0.729 | 0.724 | 0.720 | 0.715 | 0.045 |
Country | Position of Countries for D(α) Measure and Different Coefficients α | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | |
Belgium | 10 | 9 | 10 | 10 | 11 | 10 | 10 | 10 | 10 | 10 | 11 |
Bulgaria | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 |
Czechia | 18 | 18 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 |
Denmark | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Germany | 20 | 20 | 20 | 19 | 19 | 19 | 20 | 20 | 20 | 20 | 21 |
Estonia | 4 | 4 | 4 | 5 | 6 | 6 | 6 | 7 | 7 | 7 | 7 |
Ireland | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Greece | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |
Spain | 13 | 13 | 13 | 14 | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
France | 11 | 10 | 9 | 9 | 8 | 9 | 9 | 9 | 9 | 9 | 9 |
Croatia | 17 | 17 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 |
Italy | 19 | 19 | 19 | 20 | 20 | 21 | 21 | 21 | 21 | 22 | 22 |
Cyprus | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 |
Latvia | 9 | 11 | 11 | 12 | 12 | 12 | 12 | 12 | 13 | 13 | 13 |
Lithuania | 8 | 8 | 8 | 8 | 10 | 11 | 11 | 11 | 12 | 14 | 14 |
Luxembourg | 12 | 12 | 12 | 11 | 9 | 8 | 8 | 8 | 8 | 8 | 8 |
Hungary | 21 | 21 | 21 | 21 | 22 | 22 | 22 | 22 | 23 | 23 | 23 |
Malta | 22 | 22 | 22 | 22 | 21 | 20 | 19 | 19 | 19 | 19 | 19 |
Netherlands | 5 | 5 | 5 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Austria | 16 | 16 | 16 | 15 | 14 | 14 | 13 | 13 | 11 | 11 | 10 |
Poland | 14 | 15 | 15 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
Portugal | 15 | 14 | 14 | 13 | 13 | 13 | 14 | 14 | 14 | 12 | 12 |
Romania | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 |
Slovenia | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 6 | 6 | 6 | 6 |
Slovakia | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 22 | 21 | 20 |
Finland | 6 | 6 | 6 | 6 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Sweden | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Spearman Coefficient | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 |
---|---|---|---|---|---|---|---|---|---|---|---|
0.0 | 1.000 | ||||||||||
0.1 | 0.998 | 1.000 | |||||||||
0.2 | 0.996 | 0.999 | 1.000 | ||||||||
0.3 | 0.991 | 0.996 | 0.997 | 1.000 | |||||||
0.4 | 0.982 | 0.987 | 0.989 | 0.995 | 1.000 | ||||||
0.5 | 0.978 | 0.983 | 0.984 | 0.991 | 0.998 | 1.000 | |||||
0.6 | 0.976 | 0.980 | 0.982 | 0.988 | 0.996 | 0.999 | 1.000 | ||||
0.7 | 0.974 | 0.979 | 0.980 | 0.987 | 0.996 | 0.998 | 0.999 | 1.000 | |||
0.8 | 0.964 | 0.969 | 0.971 | 0.980 | 0.991 | 0.995 | 0.997 | 0.998 | 1.000 | ||
0.9 | 0.953 | 0.960 | 0.961 | 0.972 | 0.986 | 0.991 | 0.992 | 0.993 | 0.997 | 1.000 | |
1.0 | 0.947 | 0.954 | 0.955 | 0.966 | 0.982 | 0.986 | 0.988 | 0.989 | 0.995 | 0.999 | 1.000 |
EU Country | Ti | Ranking TOPSIS | Qi | Ranking VIKOR |
---|---|---|---|---|
Belgium | 0.635 | 10 | 0.379 | 12 |
Bulgaria | 0.203 | 26 | 0.971 | 26 |
Czechia | 0.575 | 17 | 0.461 | 17 |
Denmark | 0.732 | 2 | 0.153 | 3 |
Germany | 0.502 | 19 | 0.558 | 20 |
Estonia | 0.675 | 6 | 0.239 | 8 |
Ireland | 0.753 | 1 | 0.221 | 7 |
Greece | 0.393 | 24 | 0.828 | 24 |
Spain | 0.603 | 15 | 0.526 | 19 |
France | 0.642 | 9 | 0.296 | 10 |
Croatia | 0.557 | 18 | 0.606 | 22 |
Italy | 0.497 | 21 | 0.632 | 23 |
Cyprus | 0.367 | 25 | 0.850 | 25 |
Latvia | 0.626 | 12 | 0.402 | 13 |
Lithuania | 0.629 | 11 | 0.425 | 15 |
Luxembourg | 0.647 | 8 | 0.163 | 4 |
Hungary | 0.490 | 22 | 0.575 | 21 |
Malta | 0.501 | 20 | 0.419 | 14 |
Netherlands | 0.703 | 4 | 0.066 | 1 |
Austria | 0.620 | 13 | 0.254 | 9 |
Poland | 0.588 | 16 | 0.484 | 18 |
Portugal | 0.617 | 14 | 0.320 | 11 |
Romania | 0.176 | 27 | 1.000 | 27 |
Slovenia | 0.674 | 7 | 0.192 | 6 |
Slovakia | 0.466 | 23 | 0.459 | 16 |
Finland | 0.691 | 5 | 0.188 | 5 |
Sweden | 0.727 | 3 | 0.071 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roszkowska, E.; Filipowicz-Chomko, M. A Multi-Criteria Method Integrating Distances to Ideal and Anti-Ideal Points. Symmetry 2024, 16, 1025. https://doi.org/10.3390/sym16081025
Roszkowska E, Filipowicz-Chomko M. A Multi-Criteria Method Integrating Distances to Ideal and Anti-Ideal Points. Symmetry. 2024; 16(8):1025. https://doi.org/10.3390/sym16081025
Chicago/Turabian StyleRoszkowska, Ewa, and Marzena Filipowicz-Chomko. 2024. "A Multi-Criteria Method Integrating Distances to Ideal and Anti-Ideal Points" Symmetry 16, no. 8: 1025. https://doi.org/10.3390/sym16081025
APA StyleRoszkowska, E., & Filipowicz-Chomko, M. (2024). A Multi-Criteria Method Integrating Distances to Ideal and Anti-Ideal Points. Symmetry, 16(8), 1025. https://doi.org/10.3390/sym16081025