Enhancing NSGA-II Algorithm through Hybrid Strategy for Optimizing Maize Water and Fertilizer Irrigation Simulation
Abstract
:1. Introduction
2. Related Works
2.1. Multi-Objective Algorithm NSGA-II
2.2. Problems in CD Sorting of NSGA-II
3. The Proposed NDE-NSGA-II
3.1. Initializing Population with Tent Mapping
Algorithm 1 Tent Chaos Initialization |
|
3.2. Local Search Strategy
Algorithm 2 The local searching strategy |
|
3.3. Convergence and Diversity Measures
Algorithm 3 Elitist selection |
|
4. Algorithm Comparison
4.1. Indicators for Evaluation
4.2. Convergence Evaluation of Different Algorithms on ZDT and DTLZ Test Problems
4.3. Diversity Evaluation of Different Algorithms on ZDT and DTLZ Test Problems
4.4. Comprehensive Evaluation of Different Algorithms on ZDT and DTLZ Test Problems
4.5. Quantify the Number of Mutation Strategies across Different Algorithms and Test Functions
5. Experiments and Analysis of Results
5.1. Study Area
5.2. Objective Function
5.3. Optimization Strategies and Configuration
5.4. Result and Analysis
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cai, Y.; Wang, J. Differential evolution with hybrid linkage crossover. Inf. Sci. 2015, 320, 244–287. [Google Scholar] [CrossRef]
- Zhou, A.; Qu, B.Y.; Li, H.; Zhao, S.Z.; Suganthan, P.N.; Zhang, Q. Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm. Evol. Comput. 2011, 1, 32–49. [Google Scholar] [CrossRef]
- Pourvaziri, H.; Naderi, B. A hybrid multi-population genetic algorithm for the dynamic facility layout problem. Appl. Soft. Comput. 2014, 24, 457–469. [Google Scholar] [CrossRef]
- Saborido, R.; Ruiz, A.B.; Luque, M. Global WASF-GA: An evolutionary algorithm in multiobjective optimization to approximate the whole pareto optimal front. Evol. Comput. 2017, 25, 309–349. [Google Scholar] [CrossRef] [PubMed]
- Tran, K.D. An improved non-dominated sorting genetic algorithm-ii (ANSGA-II) with adaptable parameters. Int. J. Intell. Syst. Technol. Appl. 2009, 7, 347–369. [Google Scholar] [CrossRef]
- Ahadzadeh, B.; Abdar, M.; Safara, F.; Khosravi, A.; Menhaj, M.B.; Suganthan, P.N. SFE: A simple, fast and efficient feature selection algorithm for high-dimensional data. IEEE Trans. Evol. Comput. 2023, 27, 1896–1911. [Google Scholar] [CrossRef]
- Lin, Z.; Gao, K.; Wu, N.; Suganthan, P.N. Scheduling eight-phase urban traffic light problems via ensemble meta-heuristics and Q-learning based local search. IEEE Trans. Intell. Transp. Syst. 2023, 24, 14415–14426. [Google Scholar] [CrossRef]
- Ma, Z.; Wu, G.; Suganthan, P.N.; Song, A.; Luo, Q. Performance assessment and exhaustive listing of 500+ nature-inspired metaheuristic algorithms. Swarm Evol. Comput. 2023, 77, 101248. [Google Scholar] [CrossRef]
- Gad, A.G.; Houssein, E.H.; Zhou, M.C.; Suganthan, P.N.; Wazery, Y.M. Damping-assisted evolutionary swarm intelligence for industrial iot task scheduling in cloud computing. IEEE Internet Things J. 2023, 11, 1698–1710. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, Y.; Sun, S.; Liu, T.; Shan, Y. A comprehensive survey on NSGA-II for multi-objective optimization and applications. Artif. Intell. Rev. 2023, 56, 15217–15270. [Google Scholar] [CrossRef]
- Li, W.; Zhang, T.; Wang, R.; Huang, S.; Liang, J. Multimodal multi-objective optimization: Comparative study of the state-of-the-art. Swarm Evol. Comput. 2023, 77, 101253. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A.M.T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 2007, 11, 712–731. [Google Scholar] [CrossRef]
- Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the strength Pareto evolutionary algorithm. TIK Rep. 2001, 103, 10017663175. [Google Scholar]
- Zhou, Y.; Fan, H. Research on multi objective optimization model of sustainable agriculture industrial structure based on genetic algorithm. J. Intell. Fuzzy Syst. 2018, 35, 2901–2907. [Google Scholar] [CrossRef]
- Cheng, D.; Yao, Y.; Liu, R.; Li, X.; Guan, B.; Yu, F. Precision agriculture management based on a surrogate model assisted multiobjective algorithmic framework. Sci. Rep. 2023, 13, 1142. [Google Scholar] [CrossRef]
- Song, J.; Li, J.; Yang, Q.H.; Mao, X.; Yang, J.; Wang, K. Multi-objective optimization and its application on irrigation scheduling based on AquaCrop and NSGA-II. J. Hydraul. Eng. 2018, 49, 1284–1295. [Google Scholar]
- Llera, J.R.; Deb, K.; Runkle, E.; Xu, L.; Goodman, E. Evolving and comparing greenhouse control strategies using model-based multi-objective optimization. In Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India, 18–21 November 2018; pp. 1929–1936. [Google Scholar]
- Liu, X.; Yang, D. Irrigation schedule analysis and optimization under the different combination of P and ET0 using a spatially distributed crop model. Agric. Water Manag. 2021, 256, 107084. [Google Scholar] [CrossRef]
- White, J.W.; Alagarswamy, G.; Ottman, M.J.; Porter, C.H.; Singh, U.; Hoogenboom, G. An overview of CERES–sorghum as implemented in the crop system model version 4.5. Agron. J. 2015, 107, 1987–2002. [Google Scholar] [CrossRef]
- Ritchie, J.T. Description and performance of CERES wheat: A user-oriented wheat yield model. ARS Wheat Yield Proj. 1985, 8, 159–175. [Google Scholar]
- Otter-Nacke, S.; Ritchie, J.T.; Godwin, D.C.; Singh, U. A User’s Guide to CERES Barley—V2. 10; International Fertilizer Development Center Simulation Manual: Muscle Shoals, AL, USA, 1991; IFDC-SM-3. [Google Scholar]
- Liu, J.; Chen, X. An improved NSGA-II algorithm based on crowding distance elimination strategy. Int. J. Comput. Intell. Syst. 2019, 12, 513–518. [Google Scholar] [CrossRef]
- Dos Santos Coelho, L.; Mariani, V.C. Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization. Expert Syst. Appl. 2008, 34, 1905–1913. [Google Scholar] [CrossRef]
- Yan, Z.; Jin, Q.; Zhang, Y.; Wang, Z.; Li, Z. An Improved Multi-Objective Harris Hawk Optimization with Blank Angle Region Enhanced Search. Symmetry 2022, 14, 967. [Google Scholar] [CrossRef]
- Kaveh, A.; Ilchi Ghazaan, M.; Saadatmand, F. Colliding bodies optimization with Morlet wavelet mutation and quadratic interpolation for global optimization problems. Eng. Comput. 2022, 38, 2743–2767. [Google Scholar] [CrossRef]
- Zitzler, E.; Deb, K.; Thiele, L. Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. 2000, 8, 173–195. [Google Scholar] [CrossRef] [PubMed]
- Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E. Scalable multi-objective optimization test problems. In Proceedings of the 2002 Congress on Evolutionary Computation, CEC’02 (Cat. No. 02TH8600), Honolulu, HI, USA, 12–17 May 2002; Volume 1, pp. 825–830. [Google Scholar]
- Zeng, N.; Song, D.; Li, H.; You, Y.; Liu, Y.; Alsaadi, F.E. A competitive mechanism integrated multi-objective whale optimization algorithm with differential evolution. Neurocomputing 2021, 432, 170–182. [Google Scholar] [CrossRef]
- Li, M.; Yao, X. Quality evaluation of solution sets in multiobjective optimisation: A survey. ACM Comput. Surv. (CSUR) 2019, 52, 26. [Google Scholar] [CrossRef]
- Ishibuchi, H.; Masuda, H.; Tanigaki, Y.; Nojima, Y. Modified distance calculation in generational distance and inverted generational distance. In Proceedings of the Evolutionary Multi-Criterion Optimization: 8th International Conference, EMO 2015, Guimarães, Portugal, 29 March–1 April 2015; Proceedings, Part II 8. Springer International Publishing: New York, NY, USA, 2015; pp. 110–125. [Google Scholar]
- Tian, Y.; Cheng, R.; Zhang, X.; Li, M.; Jin, Y. Diversity assessment of multi-objective evolutionary algorithms: Performance metric and benchmark problems [research frontier]. IEEE Comput. Intell. Mag. 2019, 14, 61–74. [Google Scholar] [CrossRef]
- Zitzler, E.; Thiele, L. Multiobjective optimization using evolutionary algorithms—A comparative case study. In Proceedings of the International Conference on Parallel Problem Solving from Nature, Berlin, Heidelberg, 27–30 September 1998; Springer: Berlin/Heidelberg, Germany, 1998; pp. 292–301. [Google Scholar]
D | NSGA-II | MOEA/D | SPEA2 | CDE-NSGA-II | CMWOA | NDE-NSGA-II | |
---|---|---|---|---|---|---|---|
ZDT1 | 30 | ||||||
()− | ()− | ()− | ()− | ()+ | () | ||
ZDT2 | 30 | ||||||
()− | ()− | ()− | ()− | ()− | () | ||
ZDT3 | 30 | ||||||
()− | ()− | ()+ | ()− | ()+ | () | ||
ZDT4 | 10 | ||||||
()− | ()− | ()− | ()= | ()− | () | ||
ZDT6 | 10 | ||||||
()− | ()− | ()− | ()− | ()− | () | ||
DTLZ1 | 7 | ||||||
()− | ()− | ()− | ()− | ()− | () | ||
DTLZ2 | 12 | ||||||
()= | ()+ | ()− | ()= | ()− | () | ||
DTLZ3 | 12 | ||||||
()+ | ()− | ()− | ()− | ()− | ( | ||
DTLZ4 | 12 | ||||||
()= | ()+ | ()− | ()− | ()− | () | ||
DTLZ5 | 12 | ||||||
()= | ()+ | ()− | ()= | ()− | () | ||
DTLZ6 | 12 | ||||||
()− | ()− | ()− | ()− | ()− | () | ||
DTLZ7 | 12 | ||||||
()+ | ()+ | ()+ | ()− | ()+ | () | ||
+/−/= | 2/7/3 | 4/8/0 | 2/10/0 | 0/9/3 | 3/9/0 |
D | NSGA-II | MOEA/D | SPEA2 | CDE-NSGA-II | CMWOA | NDE-NSGA-II | |
---|---|---|---|---|---|---|---|
ZDT1 | 30 | ||||||
()− | ()− | ()− | ()− | ()= | () | ||
ZDT2 | 30 | ||||||
()− | ()− | ()− | ()− | ()= | () | ||
ZDT3 | 30 | ||||||
()+ | ()− | ()+ | ()= | ()+ | () | ||
ZDT4 | 10 | ||||||
()− | ()− | ()− | ()− | ()− | () | ||
ZDT6 | 10 | ||||||
()− | ()− | ()− | ()− | ()− | () | ||
DTLZ1 | 7 | ||||||
()− | ()+ | ()− | ()− | ()− | () | ||
DTLZ2 | 12 | ||||||
()− | ()+ | ()+ | ()− | ()+ | () | ||
DTLZ3 | 12 | ||||||
()− | ()− | ()− | ()− | ()− | () | ||
DTLZ4 | 12 | ||||||
()− | ()− | ()− | ()− | ()= | () | ||
DTLZ5 | 12 | ||||||
()− | ()− | ()− | ()− | ()− | () | ||
DTLZ6 | 12 | ||||||
()− | ()− | ()− | ()− | ()− | () | ||
DTLZ7 | 12 | ||||||
()+ | ()= | ()+ | ()− | ()+ | () | ||
+/−/= | 2/10/0 | 2/9/1 | 3/9/0 | 0/11/1 | 3/6/3 |
D | NSGA-II | MOEA/D | SPEA2 | CDE-NSGA-II | CMWOA | NDE-NSGA-II | |
---|---|---|---|---|---|---|---|
ZDT1 | 30 | ||||||
()− | ()− | ()− | ()− | ()= | () | ||
ZDT2 | 30 | ||||||
()− | ()− | ()− | ()− | ()= | () | ||
ZDT3 | 30 | ||||||
()= | ()− | ()+ | ()= | ()+ | () | ||
ZDT4 | 10 | ||||||
()− | ()− | ()− | ()= | ()− | () | ||
ZDT6 | 10 | ||||||
()− | ()− | ()− | ()− | ()= | () | ||
DTLZ1 | 7 | ||||||
()− | ()= | ()− | ()− | ()− | () | ||
DTLZ2 | 12 | ||||||
()− | ()+ | ()= | ()− | ()− | () | ||
DTLZ3 | 12 | ||||||
()+ | ()− | ()− | ()− | ()− | () | ||
DTLZ4 | 12 | ||||||
()− | ()− | ()− | ()− | ()− | () | ||
DTLZ5 | 12 | ||||||
()= | ()− | ()= | ()= | ()− | () | ||
DTLZ6 | 12 | ||||||
()− | ()− | ()− | ()− | ()= | () | ||
DTLZ7 | 12 | ||||||
()+ | ()+ | ()+ | ()− | ()+ | () | ||
+/−/= | 2/8/2 | 2/9/1 | 2/8/2 | 0/9/3 | 2/6/4 |
D | NSGA-II | MOEA/D | SPEA2 | CDE-NSGA-II | CMWOA | NDE-NSGA-II | |
---|---|---|---|---|---|---|---|
ZDT1 | 30 | 127/299 | 291/633 | 161/303 | 134/318 | 122/314 | 98/310 |
ZDT2 | 30 | 129/302 | 315/594 | 152/318 | 133/302 | 137/295 | 125/312 |
ZDT3 | 30 | 163/269 | 388/633 | 142/325 | 145/295 | 147/311 | 120/328 |
ZDT4 | 10 | 82/103 | 216/407 | 76/100 | 89/111 | 89/94 | 105/189 |
ZDT6 | 10 | 58/101 | 121/219 | 53/95 | 54/102 | 41/94 | 65/106 |
DTLZ1 | 7 | 8/70 | 36/237 | 8/69 | 10/75 | 20/73 | 8/77 |
DTLZ2 | 12 | 4/132 | 36/382 | 6/123 | 3/115 | 4/102 | 2/121 |
DTLZ3 | 12 | 44/126 | 43/347 | 33/117 | 28/113 | 28/108 | 16/126 |
DTLZ4 | 12 | 14/103 | 26/268 | 7/124 | 16/132 | 11/113 | 2/120 |
DTLZ5 | 12 | 7/122 | 13/343 | 9/113 | 11/126 | 13/120 | 6/134 |
DTLZ6 | 12 | 85/115 | 48/339 | 11/133 | 11/115 | 2/106 | 6/132 |
DTLZ7 | 12 | 102/193 | 298/587 | 103/222 | 90/230 | 80/233 | 123/241 |
N1 Costs (Yuan/kg) | N2 Costs (Yuan/kg) | N3 Costs (Yuan/kg) |
---|---|---|
3.98 | 2.65 | 3.82 |
Yield (kg/ha) | Yield Increase (%) | Total Irrigation (mm) | Irrigation Reduction (%) | Total Nitrogen (kg/ha) | Fertilization Reduction (%) | ||||
---|---|---|---|---|---|---|---|---|---|
Practices | Optimized Results | Practices | Optimized Results | Practices | Optimized Results | ||||
N1 | 12,836 | 13,585 | 5.8% | 80 | 55 | 31.3% | 300 | 375 | −25% |
N2 | 13,589 | 5.9% | 50 | 37.5% | 275 | 8.3% | |||
N3 | 13,587 | 5.5% | 62 | 22.5% | 277 | 7.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, J.; Liu, R.; Cheng, D.; Wang, X.; Zhang, T.; Yu, F. Enhancing NSGA-II Algorithm through Hybrid Strategy for Optimizing Maize Water and Fertilizer Irrigation Simulation. Symmetry 2024, 16, 1062. https://doi.org/10.3390/sym16081062
Du J, Liu R, Cheng D, Wang X, Zhang T, Yu F. Enhancing NSGA-II Algorithm through Hybrid Strategy for Optimizing Maize Water and Fertilizer Irrigation Simulation. Symmetry. 2024; 16(8):1062. https://doi.org/10.3390/sym16081062
Chicago/Turabian StyleDu, Jinyang, Renyun Liu, Du Cheng, Xu Wang, Tong Zhang, and Fanhua Yu. 2024. "Enhancing NSGA-II Algorithm through Hybrid Strategy for Optimizing Maize Water and Fertilizer Irrigation Simulation" Symmetry 16, no. 8: 1062. https://doi.org/10.3390/sym16081062
APA StyleDu, J., Liu, R., Cheng, D., Wang, X., Zhang, T., & Yu, F. (2024). Enhancing NSGA-II Algorithm through Hybrid Strategy for Optimizing Maize Water and Fertilizer Irrigation Simulation. Symmetry, 16(8), 1062. https://doi.org/10.3390/sym16081062