Next Article in Journal
The OX Optimizer: A Novel Optimization Algorithm and Its Application in Enhancing Support Vector Machine Performance for Attack Detection
Previous Article in Journal
Lepton Flavor Universality Tests in Semileptonic bc Decays
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Some Generalized Neutrosophic Metric Spaces and Fixed Point Results with Applications

1
Department of Mathematics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
2
Department of Mathematics, Quaid-i-Azam University, Islamabad 15320, Pakistan
3
Department of Mathematics, University of Management and Technology, Lahore 54770, Pakistan
4
Department of Mathematics, Technical University of Cluj Napoca, 400114 Cluj-Napoca, Romania
5
Department of Economic and Technical Sciences, Vasile Goldiș Western University of Arad, 310025 Arad, Romania
6
Department of Hospitality Services, Babeș-Bolyai University, Horea Street, no. 7, 400174 Cluj-Napoca, Romania
7
Computer Science Department, Technical University of Cluj Napoca, 400027 Cluj-Napoca, Romania
*
Authors to whom correspondence should be addressed.
Symmetry 2024, 16(8), 965; https://doi.org/10.3390/sym16080965
Submission received: 26 May 2024 / Revised: 4 July 2024 / Accepted: 12 July 2024 / Published: 29 July 2024
(This article belongs to the Section Mathematics)

Abstract

:
This paper contains several novel definitions including neutrosophic E β metric space, neutrosophic quasi- S β -metric space, neutrosophic pseudo- S β -metric space, neutrosophic quasi- E -metric space and neutrosophic pseudo- E β -metric space. Further, we present some generalized fixed point results with non-trivial examples and the decomposition theorem in the setting of the neutrosophic pseudo- E β -metric space. Moreover, by using the main result, we examine the existence and uniqueness of the solution to an integral equation, a system of linear equations, and nonlinear fractional differential equations.

1. Introduction

There are numerous applications for fixed points (FPs) in neutrosophic metric spaces in the fields of mathematics, computer science, economics, and engineering. By adding the idea of indeterminacy or uncertainty, neutrosophic metric space broadens the concept of metric spaces. The literature on mathematical analysis contains many generalizations of a metric space (MS). The well-known 2-MS concept was first proposed by Gahlar [1]; however, in fact, MS is continuous while 2-MS is not. Following that, Dhage [2] presented the notion of D-MS; however, Mustafa and Sims [3] clarified that several of D-MS’s topological characteristics were false, and they provided the concept of G-MS. According to Jleli and Samet [4], most of the FP theorems in the context of the G-MS can be easily verified by using MS and quasi MS. Authors in [5] presented the notion of S-MS, in 2012, and demonstrated several FP theorems in the context of complete S-MS. Bakhtin [6] introduced b-MS, in 1989, by multiplying the right side of triangle inequality by a real value 𝜛 1 . In b-MS, it becomes MS if we choose 𝜛 = 1 . Subsequently, Sedghi et al. [7] combined the concepts of b-MS and S-MS to introduce the idea of S β -MS; however, S β -MS is not continuous.
Zadeh [8] presented the notion of fuzzy logic. As compared to the notion of traditional logic, fuzzy logic attributes a number to an element inside the interval [0, 1], even though certain numbers are not contained within the set. Uncertainty, a crucial component of actual difficulty, has assisted Zadeh in learning fuzzy set (FS) theories in order to cope with the problem of indefinites. For a variety of processes, including one that incorporates the use of fuzzy logic, the theory is viewed as an FP in the fuzzy metric space (FMS). Eventually, Heilpern [9] and Zadeh’s results developed the fuzzy mapping idea and a theorem based on FPs for fuzzy contraction mapping in linear MS, representing a fuzzy generalized version of Banach’s contraction concept. If the distance between the elements is not an exact integer, imprecision is introduced in the concept of FMSs given by Kaleva and Saikkala [10]. Following that, the notation of an FMS was introduced, first by Kramosil and Michalek [11] and then by George and Veeramani [12]. The definition and various characteristics of fuzzy b-MS were established by Nadaban [13]. Malviya [14] used contraction mappings to demonstrate several FP results and presented the ideas of N-FMS and pseudo N-FMS. The notion of N b -FMS and its topological features were demonstrated with several FP theorems for contraction mappings by Fernandez et al. [15]. Using the ideas of intuitionistic FSs, continuous t-norm (CtN), and continuous t-conorm (CtCN), Park [16] introduced intuitionistic fuzzy metric spaces (IFMSs), in 2004, as a generalization of FMSs. Many scholars [17,18,19,20,21,22] then turned their attention to IFMS generalizations and developed FP results for contraction mappings. Several FP theorems for contraction mappings under random conditions were proven by Ionescu et al. [23] and Mehmood et al. [24] in their work on IFMSs and extended b-metric spaces. The concept of neutrosophic metric space (NMS) was introduced and various results were proven by Murat and Necip [25]. Ishtiaq et al. [26] provided the notion of intuitionistic fuzzy N b metric space and proved numerous FP results. See [27,28,29] for more details related to this study.
The generalizations of NMSs increase the area of mathematical analysis by providing tools for understanding complicated structures and systems, as well as insights into abstract algebraic and topological features. They are critical for building the theoretical foundations of many fields of mathematics, as well as applying mathematical principles to a wide range of scientific and real-world situations. Motivated by [25,26], we present numerous notions including neutrosophic E β metric space (NNbMS), neutrosophic quasi- S β -metric space (NQSbMS), neutrosophic pseudo- S β -metric space (NPSbMS), neutrosophic quasi- E -metric space (NQNMS) and neutrosophic pseudo- E β -metric space (NPNbMS). We prove several FP theorems and decomposition theorems in the context of NNBMS. At the end, we apply the main result and find the existence and uniqueness of an integral equation (IE), a system of linear equations (SLEs) and nonlinear fractional differential equations (FDE).

2. Preliminaries

We include several definitions from existing literature to support the main study.
Definition 1
([22]). Assume that   : I 3 I   I = 0 , 1  be a mapping.   is said to be a CtN if it fulfills the following axioms:
(i) 
γ , 1 , 1 = γ ,   0 , 0 , 0 = 0 ;
(ii) 
γ , β , π = γ , π , β = β , π , γ ;
(iii) 
* is continuous;
(iv) 
γ 1 , β 1 , π 1 γ 2 , β 2 , π 2  for  γ 1 γ 2 ,   β 1 β 2 , π 1 π 2 .
γ β π = γ β π  is a to be product CtN and  γ β π = min γ , β , π  is a minimum CtN.
Definition 2
([22]). Assume that  : I 3 I   I = 0 , 1  be a mapping.   is called a CtCN if it satisfies the conditions below:
(i) 
γ , 0 , 0 = γ ,   0 , 0 , 0 = 0 ;
(ii) 
γ , β , π = γ , π , β = β , π , γ ;
(iii) 
 is continuous;
(iv) 
γ 1 , β 1 , π 1 γ 2 , β 2 , π 2  for  γ 1 γ 2 ,   β 1 β 2 , π 1 π 2 .
γ β π = max γ , β , π  is an example of a maximum CtCN.
Definition 3
([14]). A triple  Z , E ,  is an NFMS with an FS  E  on  Z 3 × 0 , +  and   is a CtN if it fulfills the axioms below for all  z , 𝜘 , ν , γ Z  and  ς , 𝝕 , σ > 0 :
(a) 
E z , 𝜘 , ν , σ > 0 ,
(b) 
E z , 𝜘 , ν , σ = 1  if and only if  z = 𝜘 = ν ,
(c) 
E z , 𝜘 , ν , ς + 𝝕 + σ E z , z , γ , ς E 𝜘 , 𝜘 , γ , 𝝕 E ν , ν , γ , σ ,
(d) 
E z , 𝜘 , ν , . : 0 , + 0 , 1  is a continuous function (CF).
Definition 4
([7]). Let  Z  be an arbitrary set that is not empty and  ζ 1  be a positive real number. Then, a mapping  S β : Z 3 0 , +  is said to be  S β -metric if it satisfies for all  z , 𝜘 , ν , γ Z :
(S1) 
S β z , 𝜘 , ν = 0  if  z = 𝜘 = ν ,
(S2) 
S β z , 𝜘 , ν ζ S β z , z , γ + S β 𝜘 , 𝜘 , γ + S β ν , ν , γ .
Then,  ( Z ,   S β )  is an  S β - MS.
Definition 5
([16]). Let  Z , E , Θ , ,  be an IFMS if  Z  is an arbitrary set,   is a CtN,   is a CtCN, and  E ,   Θ  are FSs on  Z 2 × 0 , +  fulfilling the axioms which are given below for all  z , 𝜘 , ν Z  and  𝝕 , σ > 0 :
(i) 
E z , 𝜘 , σ + Θ z , 𝜘 , σ 1 ,
(ii) 
E z , 𝜘 , σ > 0 ,
(iii) 
E z , 𝜘 , σ = 1  if and only if  z = 𝜘 ,
(iv) 
E z , 𝜘 , 𝜛 + σ E z , ν , 𝝕 E ν , 𝜘 , 𝝕 ,
(v) 
E z , 𝜘 , . : 0 , + 0 , 1  is a CF,
(vi) 
Θ z , 𝜘 , σ > 0 ,
(vii) 
Θ z , 𝜘 , σ = 0  if and only if  z = 𝜘 ,
(viii) 
Θ z , 𝜘 , 𝝕 + σ Θ z , ν , 𝝕 Θ ν , 𝜘 , 𝝕 ,
(ix) 
Θ z , 𝜘 , . : 0 , + 0 , 1  is a CF.
Definition 6
([26]). Let a six tuple  Z , E , Θ , , , ζ  be an IFNbMS if  Z  is an arbitrary set,  ζ 1  is a real number,   is a CtN,   is a CtCN,  E  and  Θ  are FSs on  Z 3 × 0 , +  fulfills the following conditions for all  z , 𝜘 , ν , γ Z  and  ς , 𝝕 , σ > 0 :
(i) 
E z , 𝜘 , ν , σ + Θ z , 𝜘 , ν , σ 1 ,
(ii) 
E z , 𝜘 , ν , σ > 0 ,
(iii) 
E z , 𝜘 , ν , σ = 1  if and only if  z = 𝜘 = ν ,
(iv) 
E z , 𝜘 , ν , ζ ς + 𝝕 + σ E z , z , γ , ς E 𝜘 , 𝜘 , γ , 𝝕 E ν , ν , γ , σ ,
(v) 
E z , 𝜘 , ν , . : 0 , + 0 , 1  is a CF,
(vi) 
Θ z , 𝜘 , ν , σ > 0 ,
(vii) 
Θ z , 𝜘 , ν , σ = 0  if and only if  z = 𝜘 = ν ,
(viii) 
Θ z , 𝜘 , ν , ζ ς + 𝝕 + σ Θ z , z , γ , ς Θ 𝜘 , 𝜘 , γ , 𝝕 Θ ν , ν , γ , σ ,
(ix) 
Θ z , 𝜘 , ν , . : 0 , + 0 , 1  is a CF.
Here,  E z , 𝜘 , ν , σ  is said to be a membership function and  Θ z , 𝜘 , ν , σ  non-membership function of  z , 𝜘  and  ν  concerning  σ .
Definition 7
([25]). A sextuple  Z , E , Θ , R , ,  is called an NMS if  Z  is an arbitrary set,   is a CtN,   is a CtCN,  E , Θ  and  R  are NSs on  Z 3 × 0 , +  fulfills the following conditions for all  z , 𝜘 , ν , γ Z  and  ς , 𝝕 , σ > 0 :
(i) 
E z , 𝜘 , ν , σ + Θ z , 𝜘 , ν , σ + R z , 𝜘 , ν , σ 3 ,
(ii) 
E z , 𝜘 , ν , σ > 0 ,
(iii) 
E z , 𝜘 , ν , σ = 1  if and only if  z = 𝜘 = ν ,
(iv) 
E z , 𝜘 , ν , ς + 𝜛 + σ E z , z , γ , ς E 𝜘 , 𝜘 , γ , 𝝕 E ν , ν , γ , σ ,
(v) 
E z , 𝜘 , ν , . : 0 , + 0 , 1  is a CF,
(vi) 
Θ z , 𝜘 , ν , σ > 0 ,
(vii) 
Θ z , 𝜘 , ν , σ = 0  if and only if  z = 𝜘 = ν ,
(viii) 
Θ z , 𝜘 , ν , ς + 𝝕 + σ Θ z , z , γ , ς Θ 𝜘 , 𝜘 , γ , 𝝕 Θ ν , ν , γ , σ ,
(ix) 
Θ z , 𝜘 , ν , . : 0 , + 0 , 1  is a CF.
(x) 
R z , 𝜘 , ν , σ > 0 ,
(xi) 
R z , 𝜘 , ν , σ = 0  if and only if  z = 𝜘 = ν ,
(xii) 
R z , 𝜘 , ν , ς + 𝝕 + σ R z , z , γ , ς Θ 𝜘 , 𝜘 , γ , 𝝕 R ν , ν , γ , σ ,
(xiii) 
R z , 𝜘 , ν , . : 0 , + 0 , 1  is a CF.
Definition 8
([26]). A sextuple  Z , E 𝝕 , Θ 𝝕 , , , ζ  is an IFQSbMS if  Z  is an arbitrary set,  ζ 1  is a real number,    is a CtN,   is a CtCN,  E 𝝕  and  Θ 𝝕  are FSs on  Z 3 × 0 , +  satisfies the axioms below for all  z , 𝜘 , ν , γ Z  and  ς , 𝝕 , σ > 0 :
(a) 
E 𝝕 z , 𝜘 , ν , σ + Θ 𝝕 z , 𝜘 , ν , σ 1 ,
(b) 
E 𝝕 z , 𝜘 , ν , σ 0 ,
(c) 
E 𝝕 z , 𝜘 , ν , σ = E 𝝕 P z , 𝜘 , ν , σ = 1  if and only if  z = 𝜘 = ν ,  where  P  is permutation,
(d) 
E 𝝕 z , 𝜘 , ν , ζ ς + 𝝕 + σ E 𝝕 z , z , γ , ς E 𝝕 𝜘 , 𝜘 , γ , 𝝕 E 𝝕 ν , ν , γ , σ ,
(e) 
E 𝝕 z , 𝜘 , ν , . : 0 , + 0 , 1  is a CF,
(f) 
Θ 𝝕 z , 𝜘 , ν , σ 0 ,
(g) 
Θ 𝝕 z , 𝜘 , ν , σ = Θ 𝝕 P z , 𝜘 , ν , σ = 0  if and only if  z = 𝜘 = ν ,  where  P  is permutation,
(h) 
Θ 𝝕 z , 𝜘 , ν , ζ ς + 𝝕 + σ Θ 𝝕 z , z , γ , ς Θ 𝝕 𝜘 , 𝜘 , γ , 𝝕 Θ 𝝕 ν , ν , γ , σ ,
(i) 
Θ 𝝕 z , 𝜘 , ν , . : 0 , + 0 , 1  is a CF.
Here,  E 𝝕 z , 𝜘 , ν , σ  is said to be a membership function and  Θ 𝝕 z , 𝜘 , ν , σ  is non-membership function of  z , 𝜘  and  ν  concerning   σ .
Definition 9
([26]). A sextuple  Z , E E , Θ E , ,  is an IFQNMS if  Z  is an arbitrary set,   is a CtN,   is a CtCN, and  E E ,   Θ E  are FSs on  Z 3 × 0 , +  and fulfills the below conditions for all  z , 𝜘 , ν , γ Z  and  ς , 𝝕 , σ > 0 :
(a) 
E E z , 𝜘 , ν , σ + Θ E z , 𝜘 , ν , σ 1 ,
(b) 
E E z , 𝜘 , ν , σ > 0 ,
(c) 
E E z , 𝜘 , ν , σ = E E P z , 𝜘 , ν , σ = 1  if and only if  z = 𝜘 = ν ,  where  P  is permutation,
(d) 
E E z , 𝜘 , ν , ς + 𝝕 + σ E E z , z , γ , ς E E 𝜘 , 𝜘 , γ , 𝝕 E E ν , ν , γ , σ ,
(e) 
E E z , 𝜘 , ν , . : 0 , + 0 , 1  is a CF,
(f) 
Θ E z , 𝜘 , ν , σ > 0 ,
(g) 
Θ E z , 𝜘 , ν , σ = Θ E P z , 𝜘 , ν , σ = 0   i f   a n d   o n l y   i f   z = 𝜘 = ν ,  where  P  is permutation,
(h) 
Θ E z , 𝜘 , ν , ς + 𝜛 + σ Θ E z , z , γ , ς Θ E 𝜘 , 𝜘 , γ , 𝝕 Θ E ν , ν , γ , σ ,
(i) 
Θ E z , 𝜘 , ν , . : 0 , + 0 , 1  is a CF.
Definition 10
([26]). A sextuple  Z , E q , Θ q , , , ζ  is an IFPNbMS if  Z  is an arbitrary set,  ζ 1  is a real number,   is a CtN,   is a CtCN and  E q ,   Θ q  are FSs on  Z 3 × 0 , +  and satisfies the below axioms for all  z , 𝜘 , ν , γ Z  and  ς , 𝝕 , σ > 0 :
(i) 
E q z , 𝜘 , ν , σ + Θ q z , 𝜘 , ν , σ 1 ,
(ii) 
E q z , 𝜘 , ν , σ > 0 ,
(iii) 
E q z , 𝜘 , ν , σ = 1  if and only if  z = 𝜘 = ν ,
(iv) 
E q z , 𝜘 , ν , ζ ς + 𝝕 + σ E q z , z , γ , ς E q 𝜘 , 𝜘 , γ , 𝝕 E q ν , ν , γ , σ ,
(v) 
E q z , 𝜘 , ν , . : 0 , + 0 , 1  is a CF,
(vi) 
Θ q z , 𝜘 , ν , σ > 0 ,
(vii) 
Θ q z , 𝜘 , ν , σ = 0  if and only if  z = 𝜘 = ν ,
(viii) 
Θ q z , 𝜘 , ν , ζ ς + 𝝕 + σ Θ q z , z , γ , ς Θ q 𝜘 , 𝜘 , γ , 𝝕 Θ q ν , ν , γ , σ ,
(ix) 
Θ q z , 𝜘 , ν , . : 0 , + 0 , 1  is a CF.

3. Neutrosophic N b Metric Space

The concept of NNbMS is introduced and some non-trivial examples are given in this section.
Definition 11.
A septuple  Z , E , Θ , R , , , ζ  is said to ba a NNbMS if  Z  is an arbitrary set,  ζ 1  is a real number,   is a CtN,   is a CtCN,  E ,   Θ   a n d   R  are NSs on  Z 3 × 0 , +  satisfying the axioms below for all  z , 𝜘 , ν , γ Z  and  ς , 𝝕 , σ > 0 :
i. 
E z , 𝜘 , ν , σ + Θ z , 𝜘 , ν , σ + R z , 𝜘 , ν , σ 3 ,
ii. 
E z , 𝜘 , ν , σ > 0 ,
iii. 
E z , 𝜘 , ν , σ = 1   i f   a n d   o n l y   i f   z = 𝜘 = ν ,
iv. 
E z , 𝜘 , ν , ζ ς + 𝝕 + σ E z , z , γ , ς E 𝜘 , 𝜘 , γ , 𝝕 E ν , ν , γ , σ ,
v. 
E z , 𝜘 , ν , . : 0 , + 0 , 1  is a CF,
vi. 
Θ z , 𝜘 , ν , σ > 0 ,
vii. 
Θ z , 𝜘 , ν , σ = 0  if  z = 𝜘 = ν ,
viii. 
Θ z , 𝜘 , ν , ζ ς + 𝝕 + σ Θ z , z , γ , ς Θ 𝜘 , 𝜘 , γ , 𝝕 Θ ν , ν , γ , σ ,
ix. 
Θ z , 𝜘 , ν , . : 0 , + 0 , 1  is a CF.
x. 
R z , 𝜘 , ν , σ > 0 ,
xi. 
R z , 𝜘 , ν , σ = 0  if and only if  z = 𝜘 = ν ,
xii. 
R z , 𝜘 , ν , ζ ς + 𝝕 + σ R z , z , γ , ς R 𝜘 , 𝜘 , γ , 𝝕 R ν , ν , γ , σ ,
xiii. 
R z , 𝜘 , ν , . : 0 , + 0 , 1  is a CF.
In this, membership, non-membership and neutral functions of  z , 𝜘  and  ν  concerning  σ  are  E z , 𝜘 , ν , σ ,   Θ z , 𝜘 , ν , σ   a n d   R z , 𝜘 , ν , σ .
Remark 1.
The definition of NNMS can be obtained by considering the  ζ = 1  in Definition 11.
Example 1.
Let  Z = R  and  E ,   Θ  and  R  are the functions on  Z 3 × 0 , +  defined by
E z , 𝜘 , ν , σ = σ σ + ζ z ν + z + ν 2 𝜘 2
Θ z , 𝜘 , ν , σ = ζ z ν + z + ν 2 𝜘 2 σ + ζ z ν + z + ν 2 𝜘 2 ,
R z , 𝜘 , ν , σ = ζ z ν + z + ν 2 𝜘 2 σ .
for all  z , 𝜘 , ν Z  and  σ > 0 .  Therefore  Z , E , Θ , R , , , ζ  is an NNbMS with CtN  γ β π = γ β π ,  CtCN  γ β π = max γ , β , π  and constant  ζ 1 .  Figure 1, Figure 2 and Figure 3 show the graphical behavior of  E , Θ   a n d   R ,  respectively.
Proof. 
We verify (iv) and (viii), others are easy to prove. We can write
E z , z , γ , ς E 𝜘 , 𝜘 , γ , 𝝕 E ν , ν , γ , σ = ς ς + ζ z γ + z + γ 2 z 2 · 𝝕 𝝕 + ζ 𝜘 γ + 𝜘 + γ 2 𝜘 2 · σ σ + ζ ν γ + ν + γ 2 ν 2 = 1 1 + ζ z γ + z + γ 2 z 2 ς · 1 1 + ζ 𝜘 γ + 𝜘 + γ 2 𝜘 2 𝝕 · 1 1 + ζ ν γ + ν + γ 2 ν 2 σ 1 1 + ζ z γ + z + γ 2 z 2 ς + 𝝕 + σ · 1 1 + ζ 𝜘 γ + 𝜘 + γ 2 𝜘 2 ς + 𝜛 + σ · 1 1 + ζ ν γ + ν + γ 2 ν 2 ς + 𝝕 + σ 1 1 + ζ z γ + z + γ 2 z 2 + ζ 𝜘 γ + 𝜘 + γ 2 𝜘 2 + ζ ν γ + ν + γ 2 ν 2 ς + 𝝕 + σ 1 1 + z ν + z + ν 2 𝜘 2 ζ ς + 𝝕 + σ ζ ς + 𝝕 + σ ζ ς + 𝝕 + σ + z ν + z + ν 2 𝜘 2 = E z , 𝜘 , ν , ζ ς + 𝝕 + σ .
Now, let
ζ z ν + z + ν 2 𝜘 2 = ζ z ν + z + ν 2 𝜘 2 max ζ z γ + z + γ 2 z 2 ζ z γ + z + γ 2 z 2 , ζ 𝜘 γ + 𝜘 + γ 2 𝜘 2 ζ 𝜘 γ + 𝜘 + γ 2 𝜘 2 , ζ ν γ + ν + γ 2 ν 2 ζ ν γ + ν + γ 2 ν 2 ς + 𝝕 + σ + ζ z ν + z + ν 2 𝜘 2 max ζ z γ + z + γ 2 z 2 ς + ζ z γ + z + γ 2 z 2 , ζ 𝜘 γ + 𝜘 + γ 2 𝜘 2 𝝕 + ζ 𝜘 γ + 𝜘 + γ 2 𝜘 2 , ζ ν γ + ν + γ 2 ν 2 σ + ζ ν γ + ν + γ 2 ν 2 , ζ z ν + z + ν 2 𝜘 2 ς + 𝝕 + σ + ζ z ν + z + ν 2 𝜘 2 max ζ z γ + z + γ 2 z 2 ς + ζ z γ + z + γ 2 z 2 , ζ 𝜘 γ + 𝜘 + γ 2 𝜘 2 𝝕 + ζ 𝜘 γ + 𝜘 + γ 2 𝜘 2 , ζ ν γ + ν + γ 2 ν 2 σ + ζ ν γ + ν + γ 2 ν 2 Θ z , 𝜘 , ν , ζ ς + 𝝕 + σ Θ z , z , γ , ς Θ 𝜘 , 𝜘 , γ , 𝝕 Θ ν , ν , γ , σ .
and
ζ z ν + z + ν 2 𝜘 2 = ζ z ν + z + ν 2 𝜘 2 max ζ z γ + z + γ 2 z 2 , ζ 𝜘 γ + 𝜘 + γ 2 𝜘 2 , ζ ν γ + ν + γ 2 ν 2 ς + 𝝕 + σ + ζ z ν + z + ν 2 𝜘 2 max ζ z γ + z + γ 2 z 2 ς , ζ 𝜘 γ + 𝜘 + γ 2 𝜘 2 𝝕 , ζ ν γ + ν + γ 2 ν 2 σ , ζ z ν + z + ν 2 𝜘 2 ς + 𝝕 + σ max ζ z γ + z + γ 2 z 2 ς , ζ 𝜘 γ + 𝜘 + γ 2 𝜘 2 𝝕 , ζ ν γ + ν + γ 2 ν 2 σ R z , 𝜘 , ν , ζ ς + 𝝕 + σ R z , z , γ , ς R 𝜘 , 𝜘 , γ , 𝝕 R ν , ν , γ , σ .
Therefore, (iv) and (viii) are fulfilled. □
Definition 12.
Let  Z , E , Θ , R , , , ζ  be a NNbMS. Then  Z , E , Θ , R , , , ζ  is called symmetric if
E z , z , 𝜘 , σ = E 𝜘 , 𝜘 , z , σ
and
Θ z , z , 𝜘 , σ = Θ 𝜘 , 𝜘 , z , σ ,
R z , z , 𝜘 , σ = R 𝜘 , 𝜘 , z , σ ,
for all  z , 𝜘 Z  and  σ > 0 .
Example 2.
Let  Z = R  and  E , Θ ,   R  are the functions on  Z 3 × 0 , +  defined by
E z , 𝜘 , ν , σ = σ σ + z 𝜘 + 𝜘 ν + ν z p
Θ z , 𝜘 , ν , σ = z 𝜘 + 𝜘 ν + ν z p σ + z 𝜘 + 𝜘 ν + ν z p ,
and
R z , 𝜘 , ν , σ = z 𝜘 + 𝜘 ν + ν z p σ ,
for all  z , 𝜘 , ν Z  and  σ > 0 .  Then  Z , E , Θ , R , , , ζ  is a symmetric NNbMS with CtN  γ β π = γ β π ,  CtCN  γ β π = max γ , β , π  and constant  ζ = 2 2 p 1 .  Figure 4, Figure 5 and Figure 6 show the graphical behavior of  E , Θ   a n d   R , respectively.

4. Generalized Definitions

In this section, we present some generalized notions and different non-trivial examples.
Definition 13.
A septuple  Z , E 𝝕 , Θ 𝝕 ,   R 𝝕 , , , ζ  is an NQSbMS if  Z  is an arbitrary set,   is a CtN,   is a CtCN,  ζ 1  is a positive real number,  E 𝝕 ,   Θ 𝝕   a n d   R 𝝕  are NSs on  Z 3 × 0 , +  and satisfies the conditions below for all  z , 𝜘 , ν , γ Z  and  ς , 𝝕 , σ > 0 :
i. 
E 𝝕 z , 𝜘 , ν , σ + Θ 𝝕 z , 𝜘 , ν , σ + R 𝝕 z , 𝜘 , ν , σ 3 ,
ii. 
E 𝝕 z , 𝜘 , ν , σ 0 ,
iii. 
E 𝝕 z , 𝜘 , ν , σ = E 𝝕 P z , 𝜘 , ν , σ = 1  if and only if  z = 𝜘 = ν ,  where  P  is permutation,
iv. 
E 𝝕 z , 𝜘 , ν , ζ ς + 𝝕 + σ E 𝝕 z , z , γ , ς E 𝝕 𝜘 , 𝜘 , γ , 𝝕 E 𝝕 ν , ν , γ , σ ,
v. 
E 𝝕 z , 𝜘 , ν , . : 0 , + 0 , 1  is a CF,
vi. 
Θ 𝝕 z , 𝜘 , ν , σ 0 ,
vii. 
Θ 𝝕 z , 𝜘 , ν , σ = Θ 𝝕 P z , 𝜘 , ν , σ = 0  if and only if  z = 𝜘 = ν ,  where  P  is permutation,
viii. 
Θ 𝝕 z , 𝜘 , ν , ζ ς + 𝝕 + σ Θ 𝝕 z , z , γ , ς Θ 𝝕 𝜘 , 𝜘 , γ , 𝝕 Θ 𝝕 ν , ν , γ , σ ,
ix. 
Θ 𝝕 z , 𝜘 , ν , . : 0 , + 0 , 1  is a CF.
x. 
R 𝝕 z , 𝜘 , ν , σ 0 ,
xi. 
R 𝝕 z , 𝜘 , ν , σ = R 𝝕 P z , 𝜘 , ν , σ = 0  if and only if  z = 𝜘 = ν ,  where  P  is permutation,
xii. 
R 𝝕 z , 𝜘 , ν , ζ ς + 𝝕 + σ R 𝝕 z , z , γ , ς R 𝝕 𝜘 , 𝜘 , γ , 𝝕 R 𝝕 ν , ν , γ , σ ,
xiii. 
R 𝝕 z , 𝜘 , ν , . : 0 , + 0 , 1  is a CF.
In this, membership, non-membership and neutral functions of  z , 𝜘  and  ν  concerning  σ  are  E z , 𝜘 , ν , σ ,   Θ z , 𝜘 , ν , σ   a n d   R z , 𝜘 , ν , σ .
Remark 2.
The NQSbMS definition is obtained by taking μ = 1 in Definition 13.
Example 3.
Let  Z = R + 0 .  Define  E 𝝕 , Θ 𝝕  and  R 𝝕  by
E 𝝕 z , 𝜘 , ν , σ = 1 ,                                                             if   z = 𝜘 = ν , σ σ + z ν 2 + 𝜘 ν 2 2 ,           otherwise ,
Θ 𝝕 z , 𝜘 , ν , σ = 0 ,                                                             if   z = 𝜘 = ν , z ν 2 + 𝜘 ν 2 2 σ + z ν 2 + 𝜘 ν 2 2 ,           otherwise .
and
R 𝝕 z , 𝜘 , ν , σ = 0 ,                                                             if   z = 𝜘 = ν , z ν 2 + 𝜘 ν 2 2 σ ,                   otherwise .
Then  Z , E 𝝕 , Θ 𝝕 , R 𝝕 , , , ζ  is said to be an NQSbMS with  ζ = 2 .  Figure 7, Figure 8 and Figure 9 show the graphical behavior of  E 𝝕 , Θ 𝝕   a n d   R 𝝕 , respectively.
Remark 3.
If  z 𝜘 ν , then by definition of  E 𝝕 , Θ 𝝕  and  R 𝝕  in Example 3
E 𝝕 z , 𝜘 , ν , σ E 𝝕 P z , 𝜘 , ν , σ ,
Θ 𝝕 z , 𝜘 , ν , σ Θ 𝝕 P z , 𝜘 , ν , σ ,
and
R 𝝕 z , 𝜘 , ν , σ R 𝝕 P z , 𝜘 , ν , σ .
Furthermore,  E 𝝕 z , z , 𝜘 , σ E 𝝕 𝜘 , 𝜘 , ν , σ .  In general, NQSbMS is not symmetric.
Definition 14.
A septuple  Z , E 𝝕 β , Θ 𝝕 β , R 𝝕 β , , , ζ  is an NPSbMS if  Z  is an arbitrary set,  ζ 1  is a real number,   is a CtN,   is a CtCN,  E 𝝕 β ,   Θ 𝝕 β  and  R 𝝕 β  are NSs on  Z 3 × 0 , + , and fulfills the conditions below for all  z , 𝜘 , ν , γ Z  and  ς , 𝝕 , σ > 0 :
(I) 
E 𝝕 β z , 𝜘 , ν , σ + Θ 𝝕 β z , 𝜘 , ν , σ + R 𝝕 β z , 𝜘 , ν , σ 3 ,
(II) 
E 𝝕 β z , 𝜘 , ν , σ 0 ,
(III) 
E 𝝕 β z , 𝜘 , ν , σ = 1  if and only if  z = 𝜘 = ν ,
(IV) 
E 𝝕 β z , 𝜘 , ν , ζ ς + 𝝕 + σ E 𝝕 β z , z , γ , ς E 𝝕 β 𝜘 , 𝜘 , γ , 𝝕 E 𝝕 β ν , ν , γ , σ ,
(V) 
E 𝝕 β z , 𝜘 , ν , . : 0 , + 0 , 1  is a CF,
(VI) 
Θ 𝝕 β z , 𝜘 , ν , σ 0 ,
(VII) 
Θ 𝝕 β z , 𝜘 , ν , σ = 0  if and only if  z = 𝜘 = ν ,
(VIII) 
Θ 𝝕 β z , 𝜘 , ν , ζ ς + 𝝕 + σ Θ 𝝕 β z , z , γ , ς Θ 𝝕 β 𝜘 , 𝜘 , γ , 𝝕 Θ 𝝕 β ν , ν , γ , σ ,
(IX) 
Θ 𝝕 β z , 𝜘 , ν , . : 0 , + 0 , 1  is a CF.
(X) 
R 𝝕 β z , 𝜘 , ν , σ 0 ,
(XI) 
R 𝝕 β z , 𝜘 , ν , σ = 0  if and only if  z = 𝜘 = ν ,
(XII) 
R 𝝕 β z , 𝜘 , ν , ζ ς + 𝝕 + σ R 𝝕 β z , z , γ , ς R 𝝕 β 𝜘 , 𝜘 , γ , 𝝕 R 𝝕 β ν , ν , γ , σ ,
(XIII) 
R 𝝕 β z , 𝜘 , ν , . : 0 , + 0 , 1  is a CF.
Remark 4.
The definition of NPSbMS is obtained if we can obtain  ζ = 1 ,  in the above definition.
Example 4.
Suppose  Z = R + .  Define  E 𝝕  and  Θ 𝝕  by
E 𝝕 β z , 𝜘 , ν , σ = 1 ,                                                             if   z = 𝜘 = ν , σ σ + z 2 ν 2 + 𝜘 2 ν 2 2 ,     otherwise ,
Θ 𝝕 β z , 𝜘 , ν , σ = 0 ,                                                             if   z = 𝜘 = ν , z 2 ν 2 + 𝜘 2 ν 2 2 σ + z 2 ν 2 + z 2 ν 2 2 ,     otherwise .
and
R 𝝕 β z , 𝜘 , ν , σ = 0 ,                                                             if   z = 𝜘 = ν , z 2 ν 2 + 𝜘 2 ν 2 2 σ ,           otherwise .
Then  Z , E 𝝕 β , Θ 𝝕 β ,   R 𝝕 β , , , ζ  is said to be an NPSbMS. Figure 10, Figure 11 and Figure 12 show the graphical behavior of  E 𝝕 β , Θ 𝝕 β   a n d   R 𝝕 β , respectively.
Definition 15.
A sextuple  Z , E E , Θ E , R E , ,  is an NQNMS if  Z  is an arbitrary set,   is a CtN,   is a CtCN,  E E , Θ E  and  R E  are NSs on  Z 3 × 0 , + , and satisfies the below conditions for all  z , 𝜘 , ν , γ Z  and  ς , 𝝕 , σ > 0 :
(j) 
E E z , 𝜘 , ν , σ + Θ E z , 𝜘 , ν , σ + R E z , 𝜘 , ν , σ 3 ,
(k) 
E E z , 𝜘 , ν , σ > 0 ,
(l) 
E E z , 𝜘 , ν , σ = E E P z , 𝜘 , ν , σ = 1  if and only if  z = 𝜘 = ν ,  where  P  is permutation,
(m) 
E E z , 𝜘 , ν , ς + 𝝕 + σ E E z , z , γ , ς E E 𝜘 , 𝜘 , γ , 𝝕 E E ν , ν , γ , σ ,
(n) 
E E z , 𝜘 , ν , . : 0 , + 0 , 1  is a CF,
(o) 
Θ E z , 𝜘 , ν , σ > 0 ,
(p) 
Θ E z , 𝜘 , ν , σ = Θ E P z , 𝜘 , ν , σ = 0  if and only if  z = 𝜘 = ν ,  where  P  is permutation,
(q) 
Θ E z , 𝜘 , ν , ς + 𝜛 + σ Θ E z , z , γ , ς Θ E 𝜘 , 𝜘 , γ , 𝝕 Θ E ν , ν , γ , σ ,
(r) 
Θ E z , 𝜘 , ν , . : 0 , + 0 , 1  is a CF.
(s) 
R E z , 𝜘 , ν , σ > 0 ,
(t) 
R E z , 𝜘 , ν , σ = R E P z , 𝜘 , ν , σ = 0  if and only if  z = 𝜘 = ν ,  where  P  is permutation,
(u) 
R E z , 𝜘 , ν , ς + 𝜛 + σ R E z , z , γ , ς R E 𝜘 , 𝜘 , γ , 𝝕 R E ν , ν , γ , σ ,
(v) 
R E z , 𝜘 , ν , . : 0 , + 0 , 1  is a CF.
Remark 5.
An NNMS satisfies the symmetric property, i.e.,  E E z , z , 𝜘 , σ = E E 𝜘 , 𝜘 , z , σ ,   Θ E z , z , 𝜘 , σ = Θ E 𝜘 , 𝜘 , z , σ  and  R E z , z , 𝜘 , σ = R E 𝜘 , 𝜘 , z , σ ,  but in NQNMS, the symmetric property is not fulfilled, i.e.,  E E z , z , 𝜘 , σ E E 𝜘 , 𝜘 , z , σ ,   Θ E z , z , 𝜘 , σ Θ E 𝜘 , 𝜘 , z , σ  and  R E z , z , 𝜘 , σ R E 𝜘 , 𝜘 , z , σ .
Definition 16.
A sextuple  Z , E q , Θ q ,   R q , , , ζ  is an NPNbMS if  Z  arbitrary set,   is a CtN,   is a CtCN,  ζ 1  is a positive real number,  E q ,   Θ q  and  R q  are NSs on  Z 3 × 0 , +  and fulfills the following conditions for all  z , 𝜘 , ν , γ Z  and  ς , 𝝕 , σ > 0 :
(x) 
E q z , 𝜘 , ν , σ + Θ q z , 𝜘 , ν , σ + R q z , 𝜘 , ν , σ 3 ,
(xi) 
E q z , 𝜘 , ν , σ > 0 ,
(xii) 
E q z , 𝜘 , ν , σ = 1  if and only if  z = 𝜘 = ν ,
(xiii) 
E q z , 𝜘 , ν , ζ ς + 𝝕 + σ E q z , z , γ , ς E q 𝜘 , 𝜘 , γ , 𝝕 E q ν , ν , γ , σ ,
(xiv) 
E q z , 𝜘 , ν , . : 0 , + 0 , 1  is a CF,
(xv) 
Θ q z , 𝜘 , ν , σ > 0 ,
(xvi) 
Θ q z , 𝜘 , ν , σ = 0  if and only if  z = 𝜘 = ν ,
(xvii) 
Θ q z , 𝜘 , ν , ζ ς + 𝝕 + σ Θ q z , z , γ , ς Θ q 𝜘 , 𝜘 , γ , 𝝕 Θ q ν , ν , γ , σ ,
(xviii) 
Θ q z , 𝜘 , ν , . : 0 , + 0 , 1  is a CF.
(xix) 
R q z , 𝜘 , ν , σ > 0 ,
(xx) 
R q z , 𝜘 , ν , σ = 0  if and only if  z = 𝜘 = ν ,
(xxi) 
R q z , 𝜘 , ν , ζ ς + 𝝕 + σ R q z , z , γ , ς R q 𝜘 , 𝜘 , γ , 𝝕 R q ν , ν , γ , σ ,
(xxii) 
R q z , 𝜘 , ν , . : 0 , + 0 , 1  is a CF.
Example 5.
Suppose that  R  equipped with a usual metric and  Z = { z n : { z n  is convergent in  R } } .  Define CtN by  γ β π = γ β π   and CtCN by  γ β π = max γ , β , π   for all  γ , β , π 0 , 1  and
E q z n , 𝜘 n , ν n , σ = σ σ + z n ν n + 𝜘 n ν n 2
Θ q z n , 𝜘 n , ν n , σ = z n ν n + 𝜘 n ν n 2 σ + z n ν n + 𝜘 n ν n 2
and
R q z n , 𝜘 n , ν n , σ = z n ν n + 𝜘 n ν n 2 σ
Observe that  Z , E q , Θ q ,   R q , , , ζ  is an NPNbMS but it is not an NNbMS. For this, take  z n = 2 n ,   𝜘 n = 3 n  and  ν n = 5 n .  Then,  z n   𝜘 n ν n  for  z n ,   𝜘 n  and  ν n  in  Z  but
E q z n , 𝜘 n , ν n , σ = 1 , Θ q z n , 𝜘 n , ν n , σ = 0 , R q z n , 𝜘 n , ν n , σ = 0 .
Remark 6.
Every NNbMS is an NPNbMS but the converse need not be true.
Definition 17.
Suppose  Z , E , Θ , R , , , ζ  is a symmetric NNbMS. A sequence  z n  in  Z , E , Θ , R , , , ζ  is called convergent, if  E z n , z n , z , σ 1 ,   Θ z n , z n , z , σ 0  and  R z n , z n , z , σ 0  or  E z , z , z n , σ 1 ,   Θ z , z , z n , σ 0  and  R z , z , z n , σ 0  as  n +  for every  σ > 0 .  That is, for  ς > 0  and  σ > 0 , there exists  n 0 N  such that for all  n n 0 ,   E z n , z n , z , σ > 1 ς ,   Θ z n , z n , z , σ < ς  and  R z n , z n , z , σ < ς  or  E z , z , z n , σ > 1 ς , Θ z , z , z n , σ < ς  and  R z , z , z n , σ < ς .
Lemma 1.
Suppose  Z , E , Θ , R , , , ζ  is a symmetric NNbMS with CtN  γ β π = γ β π  and CtCN  γ β π = max γ , β , π .  Suppose  Z  has a convergent sequence which is  z n .  If sequence  z n  converges to  z  and  𝜘  then  z = 𝜘 .  That is, the limit of  z n  is unique if it exists.
Proof. 
Let z n  be a convergent sequence in Z and converges to z and 𝜘 . Then, E z , z , z n , 𝝕 1 ,   Θ z , z , z n , 𝝕 0 and R z , z , z n , 𝝕 0 as n + for every 𝝕 > 0 and E 𝜘 , 𝜘 , z n , σ 2 𝝕 1 ,     Θ 𝜘 , 𝜘 , z n , σ 2 𝝕 0 and R 𝜘 , 𝜘 , z n , σ 2 𝝕 0 as n + for every σ 2 𝝕 > 0 .
E z , z , 𝜘 , σ E z , z , z n , 𝝕 E z , z , z n , 𝝕 E 𝜘 , 𝜘 , z n , σ ζ 2 𝝕 1 1 1 = 1 ,
Θ z , z , 𝜘 , σ Θ z , z , z n , 𝝕 Θ z , z , z n , 𝝕 Θ 𝜘 , 𝜘 , z n , σ ζ 2 𝝕 0 0 0 = 0 ,
and
R z , z , 𝜘 , σ R z , z , z n , 𝝕 R z , z , z n , 𝝕 R 𝜘 , 𝜘 , z n , σ ζ 2 𝝕 0 0 0 = 0 ,
as n + .
Definition 18.
Let  Z , E , Θ , R , , , ζ  be a symmetric NNbMS. A sequence  z n  is a Cauchy sequence (CS), if for all  ς > 0  and  σ > 0 ,  there exists  n 0 N  such that
E z n , z n , z m , σ > 1 ς , Θ z n , z n , z m , σ < ς , R z n , z n , z m , σ < ς .
or
E z m , z m , z n , σ > 1 ς , Θ z m , z m , z n , σ < ς , R z m , z m , z n , σ < ς ,
for each  n , m n 0 .
Definition 19.
Let  Z , E , Θ , R , , , ζ  be a symmetric NNbMS.  Z  is said to be a complete symmetric NNbMS if every Cauchy in  Z  is convergent in  Z .
Definition 20.
Let  Z , E , Θ , R , , , ζ  be a symmetric NNbMS. A subset  A  of  Z  is called  F  -bounded if there exist  σ > 0   and  0 < ς < 1  such that
E z , z , 𝜘 , σ > 1 ς , Θ z , z , 𝜘 , σ < ς , R z , z , 𝜘 , σ < ς ,
for each  z , 𝜘 A .
Definition 21.
Let  Z , E , Θ , R , , , ζ  be an NNbMS. A mapping  Ω : Z Z   is said to be a neutrosophic  β -contraction if for each  z , 𝜘 , ν Z   and for some  q 0 , 1 ,  we obtain
E Ω z , Ω z , Ω 𝜘 , q σ E z , z , 𝜘 , σ , Θ Ω z , Ω z , Ω 𝜘 , q σ Θ z , z , 𝜘 , σ , R Ω z , Ω z , Ω 𝜘 , q σ R z , z , 𝜘 , σ .
Lemma 2.
Let  Z , E , Θ , R , , , ζ  be an NNbMS with CtN  γ β π = γ β π  and CtCN  γ β π = max γ , β , π .  Assume that a sequence  z n  converges to  z  in  Z . Then, sequence  z n  is called a CS in  Z .
Proof. 
There is p N for every 𝝕 , σ > 0 , we have
E z n , z n , z , 𝝕 1 , Θ z n , z n , z , 𝝕 0 , R z n , z n , z , 𝝕 0 ,
as n + , and
E z n + p , z n + p , z , σ ζ 2 𝝕 1 , Θ z n + p , z n + p , z , σ ζ 2 𝝕 0 , R z n + p , z n + p , z , σ ζ 2 𝝕 0
as n + , for all σ ζ 2 𝝕 > 0 .
z n , z n , z n + p , σ   E z n , z n , z , 𝝕 E z n , z n , z , 𝝕 E z n + p , z n + p , z , σ ζ 2 𝝕 1 1 1 = 1   as   n + ,
E Θ z n , z n , z n + p , σ   Θ z n , z n , z , 𝝕 Θ z n , z n , z , 𝝕 Θ z n + p , z n + p , z , σ ζ 2 𝝕 0 0 0 = 0 as   n + .
and
R z n , z n , z n + p , σ   R z n , z n , z , 𝝕 R z n , z n , z , 𝝕 R z n + p , z n + p , z , σ ζ 2 𝝕 0 0 0 = 0 as   n + .
Hence, z n is a CS. □
Definition 22.
Assume that the symmetric NNbMSs are  Z , E , Θ , R , , , ζ  and  Z , E , Θ , R , , , ζ . Then a function  Ω : Z Z  is said to be continuous at a point  z Z  if it is sequentially continuous at  z ,  that is, whenever  z n  is convergent to  z , we have  Ω z n  converging to  Ω z .
Proposition 1.
Let  Z , E , Θ , R , , , ζ  be symmetric NNbMSs and  Ω  be a fuzzy q-contraction. If any FP  z  of  Ω  satisfies
E z ,   z , z , σ > 0 , Θ z ,   z , z , σ < 1 , R z ,   z , z , σ < 1 ,
then
E z ,   z , z , σ = 1 , Θ z ,   z , z , σ = 0 , R z ,   z , z , σ = 0 .
Proof. 
Given that Ω is a fuzzy q-contraction, suppose a point z Z is an FP of Ω , then we obtain
E z ,   z , z , σ = E Ω z ,   Ω z , Ω z , σ E z ,   z , z , σ q E z ,   z , z , σ q 2 E z ,   z , z , σ q n 1 ,
as n + and so
E z ,   z , z , σ = 1 .
and
Θ z ,   z , z , σ = Θ Ω z ,   Ω z , Ω z , σ Θ z ,   z , z , σ q Θ z ,   z , z , σ q 2 Θ z ,   z , z , σ q n 0 ,
as n + and so
Θ z ,   z , z , σ 0 .
Similarly,
R z ,   z , z , σ = R Ω z ,   Ω z , Ω z , σ R z ,   z , z , σ q R z ,   z , z , σ q 2 R z ,   z , z , σ q n 0
as n + and so
R z ,   z , z , σ 0 .
Lemma 3.
Let  Z , E , Θ , R , , , ζ  be symmetric NNbMSs. Let  z n  and  𝜘 n  be two sequences in  Z  and suppose  z n z ,   𝜘 n 𝜘 ,  as  n + ,  E z ,   z , 𝜘 , σ n E z ,   z , 𝜘 , σ ,   Θ z ,   z , 𝜘 , σ n Θ z ,   z , 𝜘 , σ  and  R z ,   z , 𝜘 , σ n R z ,   z , 𝜘 , σ  as  n + .  Then  E z n , z n , 𝜘 n , σ n E z ,   z , z , σ ,   Θ z n , z n , 𝜘 n , σ n Θ z ,   z , z , σ  and  R z n , z n , 𝜘 n , σ n R z ,   z , z , σ  as  n + .
Proof. 
Since lim n + z n ,   lim n + z n = z ,   lim n + 𝜘 n = 𝜘 ,     lim n + E z ,   z , 𝜘 , σ n = E z ,   z , 𝜘 , σ ,   lim n + Θ z ,   z , 𝜘 , σ n = Θ z ,   z , 𝜘 , σ and lim n + R z ,   z , 𝜘 , σ n = R z ,   z , 𝜘 , σ , there is n 0 N such that σ σ n < δ for n n 0 and   δ < σ 2 , so we have
E z n , z n , 𝜘 n , σ n E z n , z n , 𝜘 n , σ δ E z n , z n , z , δ 3 ζ   E z n , z n , z , δ 3 ζ   E 𝜘 n , 𝜘 n , z , σ ζ 5 δ 3 ζ E z n , z n , z , δ 3 ζ   E z n , z n , z , δ 3 ζ   E 𝜘 n , 𝜘 n , 𝜘 , δ 6 ζ 2   E 𝜘 n , 𝜘 n , 𝜘 , δ 6 ζ 2   E 𝜘 , 𝜘 , z , σ ζ 2 δ 6 ζ 2 ,
and
E z , z , 𝜘 , σ + 2 δ E z , z , 𝜘 , σ n + 2 δ E z , z , z n , δ 3 ζ   E z , z , z n , δ 3 ζ   E 𝜘 , 𝜘 , z n , σ n ζ + δ 3 ζ E z , z , z n , δ 3 ζ   E z , z , z n , δ 3 ζ   E 𝜘 , 𝜘 , z n , δ 6 ζ 2   E 𝜘 , 𝜘 , 𝜘 n , δ 6 ζ 2 E z n , z n ,   ν n , σ n ζ 2 . Θ z n , z n , 𝜘 n , σ n Θ z n , z n , 𝜘 n , σ δ Θ z n , z n , z , δ 3 ζ   Θ z n , z n , z , δ 3 ζ   Θ 𝜘 n , 𝜘 n , z , σ ζ 5 δ 3 ζ Θ z n , z n , z , δ 3 ζ   Θ z n , z n , z , δ 3 ζ Θ 𝜘 n , 𝜘 n , 𝜘 , δ 6 ζ 2 Θ 𝜘 n , 𝜘 n , 𝜘 , δ 6 ζ 2 Θ 𝜘 , 𝜘 , z , σ ζ 2 δ 6 ζ 2 ,
and we have
Θ z , z , 𝜘 , σ + 2 δ Θ z , z , 𝜘 , σ n + 2 δ Θ z , z , z n , δ 3 ζ Θ z , z , z n , δ 3 ζ Θ 𝜘 , 𝜘 , z n , σ n ζ + δ 3 ζ Θ z , z , z n , δ 3 ζ Θ z , z , z n , δ 3 ζ Θ 𝜘 , 𝜘 , z n , δ 6 ζ 2 Θ 𝜘 , 𝜘 , 𝜘 n , δ 6 ζ 2 Θ z n , z n ,   ν n , σ n ζ 2 .
Similarly,
R z n , z n , 𝜘 n , σ n R z n , z n , 𝜘 n , σ δ R z n , z n , z , δ 3 ζ   R z n , z n , z , δ 3 ζ   R 𝜘 n , 𝜘 n , z , σ ζ 5 δ 3 ζ R z n , z n , z , δ 3 ζ   R z n , z n , z , δ 3 ζ R 𝜘 n , 𝜘 n , 𝜘 , δ 6 ζ 2 R 𝜘 n , 𝜘 n , 𝜘 , δ 6 ζ 2 R 𝜘 , 𝜘 , z , σ ζ 2 δ 6 ζ 2 ,
and
R z , z , 𝜘 , σ + 2 δ R z , z , 𝜘 , σ n + 2 δ R z , z , z n , δ 3 ζ R z , z , z n , δ 3 ζ R 𝜘 , 𝜘 , z n , σ n ζ + δ 3 ζ R z , z , z n , δ 3 ζ R z , z , z n , δ 3 ζ R 𝜘 , 𝜘 , z n , δ 6 ζ 2 R 𝜘 , 𝜘 , 𝜘 n , δ 6 ζ 2 R z n , z n ,   ν n , σ n ζ 2 .
By Definition of 17 and combining the arbitrary nature of δ and the continuity for E z ,   z , 𝜘 ,   . ,   Θ ( z ,   z , 𝜘 ,   . ) and R ( z ,   z , 𝜘 ,   . ) concerning σ . for large enough n , by using Definition 12, we obtain
E z ,   z ,   𝜘 , σ E z n ,   z n ,   𝜘 n , σ n E 𝜘 ,   𝜘 ,   z , σ E z ,   z ,   𝜘 , σ E z n ,   z n ,   ν n , σ n , E z ,   z ,   𝜘 , σ ,
and consequently, by using Definition 12, we have
lim n + E z n ,   z n ,   𝜘 n , σ n = E z ,   z ,   𝜘 , σ . Θ z ,   z ,   𝜘 , σ Θ z n ,   z n ,   𝜘 n , σ n Θ 𝜘 ,   𝜘 ,   z , σ Θ z ,   z ,   𝜘 , σ Θ z n ,   z n ,   ν n , σ n , Θ z ,   z ,   𝜘 , σ .
We obtain
lim n + Θ z n ,   z n ,   𝜘 n , σ n = Θ z ,   z ,   𝜘 , σ .
and
R z ,   z ,   𝜘 , σ R z n ,   z n ,   𝜘 n , σ n R 𝜘 ,   𝜘 ,   z , σ R z ,   z ,   𝜘 , σ R z n ,   z n ,   ν n , σ n , R z ,   z ,   𝜘 , σ .
Consequently,
lim n + R z n ,   z n ,   𝜘 n , σ n = R z ,   z ,   𝜘 , σ .
Lemma 4.
Let  Z , E , Θ , R , , , ζ  be symmetric NNbMSs. If there exists  q 0 , 1  such that  E z , z , 𝜘 , σ E z , z ,   𝜘 , σ q ,   Θ z , z , 𝜘 , σ Θ z , z ,   𝜘 , σ q  and  R z , z , 𝜘 , σ R z , z ,   𝜘 , σ q  for all  z ,   𝜘 Z ,   σ > 0  and
lim σ + E z , 𝜘 , ν , σ = 1 , lim σ + Θ z , 𝜘 , ν , σ = 0 , lim σ + R z , 𝜘 , ν , σ = 0 .
Then z = 𝜘 .
Proof. 
Assume that there exists q ( 0 , 1 ) such that E z , z , 𝜘 , σ E z , z , 𝜘 , σ q ,   Θ z , z , 𝜘 , σ Θ z , z , 𝜘 , σ q and R z , z , 𝜘 , σ R z , z , 𝜘 , σ q , for all z ,   𝜘 Z and σ > 0 . Then,
E z , z , 𝜘 , σ E z , z , 𝜘 , σ q E z , z , 𝜘 , σ q 2 ,
and so
E z , z , 𝜘 , σ E z , z , 𝜘 , σ q n ,
for positive integer n . Taking the limit as n + ,   E z , z , 𝜘 , σ 1 ,
Θ z , z , 𝜘 , σ Θ z , z , 𝜘 , σ q Θ z , z , 𝜘 , σ q 2 ,
and so
Θ z , z , 𝜘 , σ Θ z , z , 𝜘 , σ q n ,
For positive integer n . Taking the limit as + ,   Θ z , z , 𝜘 , σ = 0 ,
R z , z , 𝜘 , σ R z , z , 𝜘 , σ q R z , z , 𝜘 , σ q 2 ,
and so
R z , z , 𝜘 , σ R z , z , 𝜘 , σ q n ,
For positive integer n . Taking the limit as n + ,   R z , z , 𝜘 , σ = 0 and hence z = 𝜘 .

5. Application in FP Theory

In this, we describe the application of a Banach contraction principle via neutrosophic q contraction in symmetric NNbMSs
Theorem 1.
Suppose  Z , E , Θ , R , , , ζ  is a symmetric complete NNbMSs with
lim σ + E z , 𝜘 , ν , σ = 1 ,   lim σ + Θ z , 𝜘 , ν , σ = 0 ,   lim σ + R z , 𝜘 , ν , σ = 0
 and  Ω  be a neutrosophic  q  contraction. Then,  Ω  has a unique FP.
Proof. 
Let z 0 Z and by using the iterative process, we create a sequence   { z n } which satisfies z n = Ω n z 0 ,   n N . Since n , σ > 0 , we obtain
E z n ,   z n , z n + 1 ,   q σ = E ( Ω z n 1 , Ω z n 1 ,   Ω z n ,   q σ ) E ( z n 1 , z n 1 ,   z n ,   σ ) E z n 2 , z n 2 ,   z n , σ q E z 0 , z 0 ,   z 1 , σ q n 1 , Θ z n ,   z n , z n + 1 ,   q σ = Θ ( Ω z n 1 , Ω z n 1 ,   Ω z n ,   q σ ) Θ ( z n 1 , z n 1 ,   z n ,   σ ) Θ z n 2 , z n 2 ,   z n , σ q Θ z 0 , z 0 ,   z 1 , σ q n 1 ,
and
R z n ,   z n , z n + 1 ,   q σ = R ( Ω z n 1 , Ω z n 1 ,   Ω z n ,   q σ ) R ( z n 1 , z n 1 ,   z n ,   σ ) R z n 2 , z n 2 ,   z n , σ q R z 0 , z 0 ,   z 1 , σ q n 1 .
Hence,
E z n ,   z n , z n + 1 ,   q σ   E z 0 , z 0 ,   z 1 , σ q n 1 ,
by using (iv) of Definition 11, we obtain
E z n ,   z n , z n + p ,   σ   E z n , z n ,   z n + 1 , σ 3 ζ E z n , z n ,   z n + 1 , σ 3 ζ E z n + p , z n + p ,   z n + 1 , σ 3 ζ . = E z n , z n ,   z n + 1 , σ 3 ζ E z n , z n ,   z n + 1 , σ 3 ζ E z n + 1 , z n + 1 ,   z n + p , σ 3 ζ   [ by   using   Definition   12 ]   E z n , z n ,   z n + 1 , σ 3 ζ E z n , z n ,   z n + 1 , σ 3 ζ E z n + 1 , z n + 1 ,   z n + 2 , σ 3 ζ 2 E z n + 1 , z n + 1 ,   z n + 2 , σ 3 ζ 2 E z n + p , z n + p ,   z n + 2 , σ 3 ζ 2 , = E z n , z n ,   z n + 1 , σ 3 ζ E z n , z n ,   z n + 1 , σ 3 ζ E z n + 1 , z n + 1 ,   z n + 2 , σ 3 ζ 2 E z n + 1 , z n + 1 ,   z n + 2 , σ 3 ζ 2 E z n + 2 , z n + 2 ,   z n + p , σ 3 ζ 2 , E z 0 , z 0 ,   z 1 , σ q n ( 3 ζ ) E z 0 , z 0 ,   z 1 , σ q n ( 3 ζ ) E z 0 , z 0 ,   z 1 , σ q n + 1 3 ζ 2 E z 0 , z 0 ,   z 1 , σ q n + 1 3 ζ 2 .
By (4) neutrosophic q contraction (since, q < 1 ) so
lim n + E z n ,   z n , z n + 1 ,   σ = 1 1   1 = 1 ,
as n + , and
Θ z n ,   z n , z n + 1 ,   q σ Θ z 0 , z 0 ,   z 1 , σ q n 1 ,
by using (viii) of Definition 11, we obtain
Θ z n ,   z n , z n + p ,   σ Θ z n , z n ,   z n + 1 , σ 3 ζ Θ z n , z n ,   z n + 1 , σ 3 ζ Θ z n + p , z n + p ,   z n + 1 , σ 3 ζ . = Θ z n , z n ,   z n + 1 , σ 3 ζ Θ z n , z n ,   z n + 1 , σ 3 ζ Θ z n + 1 , z n + 1 ,   z n + p , σ 3 ζ ,   [ by   Definition   12 ] Θ z n , z n ,   z n + 1 , σ 3 ζ Θ z n , z n ,   z n + 1 , σ 3 ζ Θ z n + 1 , z n + 1 ,   z n + 2 , σ 3 ζ 2 Θ z n + 1 , z n + 1 ,   z n + 2 , σ 3 ζ 2 Θ z n + p , z n + p ,   z n + 2 , σ 3 ζ 2 , = Θ z n , z n ,   z n + 1 , σ 3 ζ Θ z n , z n ,   z n + 1 , σ 3 ζ Θ z n + 1 , z n + 1 ,   z n + 2 , σ 3 ζ 2 Θ z n + 1 , z n + 1 ,   z n + 2 , σ 3 ζ 2 Θ z n + 2 , z n + 2 ,   z n + p , σ 3 ζ 2 Θ z 0 , z 0 ,   z 1 , σ q n ( 3 ζ ) Θ z 0 , z 0 ,   z 1 , σ q n ( 3 ζ ) Θ z 0 , z 0 ,   z 1 , σ q n + 1 3 ζ 2 Θ z 0 , z 0 ,   z 1 , σ q n + 1 3 ζ 2 .
By (4), neutrosophic q contraction (i.e., q < 1 ) and taking n + , we obtain
lim n + Θ z n ,   z n , z n + 1 ,   σ = 0 0   0 = 0 .
Similarly,
R z n ,   z n , z n + 1 ,   q σ R z 0 , z 0 ,   z 1 , σ q n 1 ,
by using (xii) of Definition 11, we obtain
R z n ,   z n , z n + p ,   σ R z n , z n ,   z n + 1 , σ 3 ζ R z n , z n ,   z n + 1 , σ 3 ζ R z n + p , z n + p ,   z n + 1 , σ 3 ζ . = R z n , z n ,   z n + 1 , σ 3 ζ R z n , z n ,   z n + 1 , σ 3 ζ R z n + 1 , z n + 1 ,   z n + p , σ 3 ζ ,   [ by   Definition   12 ] R z n , z n ,   z n + 1 , σ 3 ζ R z n , z n ,   z n + 1 , σ 3 ζ R z n + 1 , z n + 1 ,   z n + 2 , σ 3 ζ 2 R z n + 1 , z n + 1 ,   z n + 2 , σ 3 ζ 2 R z n + p , z n + p ,   z n + 2 , σ 3 ζ 2 , = R z n , z n ,   z n + 1 , σ 3 ζ R z n , z n ,   z n + 1 , σ 3 ζ R z n + 1 , z n + 1 ,   z n + 2 , σ 3 ζ 2 R z n + 1 , z n + 1 ,   z n + 2 , σ 3 ζ 2 R z n + 2 , z n + 2 ,   z n + p , σ 3 ζ 2 R z 0 , z 0 ,   z 1 , σ q n ( 3 ζ ) R z 0 , z 0 ,   z 1 , σ q n ( 3 ζ ) R z 0 , z 0 ,   z 1 , σ q n + 1 3 ζ 2 R z 0 , z 0 ,   z 1 , σ q n + 1 3 ζ 2 .
By (4), neutrosophic q contraction (i.e., q < 1 ) and taking n + , we obtain
lim n + R z n ,   z n , z n + 1 ,   σ = 0 0   0 = 0 .
Hence, z n is CS. Therefore, Z , E , Θ , R , , , ζ is a symmetric complete NNbMSs, there exists z Z , we have
lim n + z n = z .
The point z is an FP of Ω , as we will demonstrate below:
E Ω z ,   Ω z ,   z ,   σ E Ω z , Ω z ,   z n , σ 3 ζ E Ω z , Ω z ,   z n , σ 3 ζ E z , z ,   Ω ( z n ) , σ 3 ζ E z , z ,   z n , σ 3 ζ q E z , z ,   z n , σ 3 ζ q E z , z ,   z n + 1 , σ 3 ζ .
subsequently Ω is neutrosophic q contraction and Ω z n = z n + 1 as n +
1 1 1 = 1
and
Θ Ω z ,   Ω z ,   z ,   σ Θ Ω z , Ω z ,   z n , σ 3 ζ Θ Ω z , Ω z ,   z n , σ 3 ζ Θ z , z ,   Ω ( z n ) , σ 3 ζ Θ z , z ,   z n , σ 3 ζ q Θ z , z ,   z n , σ 3 ζ q Θ z , z ,   z n + 1 , σ 3 ζ ,
Since Ω is neutrosophic q contraction and Ω z n = z n + 1 as n +
0 0 0 = 0 .
similarly, we have
R Ω z ,   Ω z ,   z ,   σ R Ω z , Ω z ,   z n , σ 3 ζ R Ω z , Ω z ,   z n , σ 3 ζ R z , z ,   Ω ( z n ) , σ 3 ζ R z , z ,   z n , σ 3 ζ q R z , z ,   z n , σ 3 ζ q R z , z ,   z n + 1 , σ 3 ζ ,
Since Ω is neutrosophic q contraction and Ω z n = z n + 1 as n +
0 0 0 = 0 .
That is Ω z = z , hence, z is an FP of Ω . Now, we evaluate the uniqueness; let Ω 𝜘 = 𝜘 for some 𝜘 Z , then
E 𝜘 ,   𝜘 , z , σ = E Ω 𝜘 ,   Ω 𝜘 ,   Ω z , σ E 𝜘 ,   𝜘 , z , σ q , = E Ω 𝜘 ,   Ω 𝜘 ,   Ω z , σ q E 𝜘 ,   𝜘 , z , σ q 2 E 𝜘 ,   𝜘 , z , σ q n 1 ,
as n + .
Θ 𝜘 ,   𝜘 , z , σ = Θ Ω 𝜘 ,   Ω 𝜘 ,   Ω z , σ Θ 𝜘 ,   𝜘 , z , σ q , = Θ Ω 𝜘 ,   Ω 𝜘 ,   Ω z , σ q Θ 𝜘 ,   𝜘 , z , σ q 2 Θ 𝜘 ,   𝜘 , z , σ q n 0 ,
as n + and
R 𝜘 ,   𝜘 , z , σ = R Ω 𝜘 ,   Ω 𝜘 ,   Ω z , σ R 𝜘 ,   𝜘 , z , σ q , = R Ω 𝜘 ,   Ω 𝜘 ,   Ω z , σ q R 𝜘 ,   𝜘 , z , σ q 2 R 𝜘 ,   𝜘 , z , σ q n 0 ,
as n + . That is z = 𝜘 . □
Example 6.
Suppose  Z = [ 0 , 1 ]  and  Z , E , Θ , R , , , ζ  is a symmetric complete NNbMSs where  E , Θ   a n d   R  are defined by
E z ,   𝜘 ,   ν , σ = σ σ + z ν + 𝜘 ν 2 , Θ z ,   𝜘 ,   ν , σ = z ν + 𝜘 ν 2 σ + z ν + 𝜘 ν 2 , R z ,   𝜘 ,   ν , σ = z ν + 𝜘 ν 2 σ , f o r   a l l   z ,   𝜘 , ν Z ,   σ > 0 .
Let  Ω z = λ z , λ < 2 2 , z Z , σ > 0 .  Then, for  1 2 > q
E Ω z ,   Ω z , Ω 𝜘 , σ = σ σ + Ω z Ω 𝜘 + Ω z Ω 𝜘 2 , σ σ + 2 Ω z Ω 𝜘 2 = σ σ + 2 λ z λ 𝜘 2 = σ σ + 4 λ 2 z 𝜘 2 = σ λ 2 σ λ 2 + z 𝜘 + z 𝜘 2 = σ q σ q + z 𝜘 + z 𝜘 2 = E z ,   z , 𝜘 , σ q ,
where  λ 2 = q ,  and
Θ Ω z ,   Ω z , Ω 𝜘 , σ = Ω z Ω 𝜘 + Ω z Ω 𝜘 2 σ + Ω z Ω 𝜘 + Ω z Ω 𝜘 2 , 2 Ω z Ω 𝜘 2 σ + 2 Ω z Ω 𝜘 2 = 2 λ z λ 𝜘 2 σ + 2 λ z λ 𝜘 2 = 4 λ 2 z 𝜘 2 σ + 4 λ 2 z 𝜘 2 = z 𝜘 + z 𝜘 2 σ λ 2 + z 𝜘 + z 𝜘 2 = z 𝜘 + z 𝜘 2 σ q + z 𝜘 + z 𝜘 2 = Θ z ,   z , 𝜘 , σ q ,
where  λ 2 = q .  Similarly,
R Ω z ,   Ω z , Ω 𝜘 , σ = Ω z Ω 𝜘 + Ω z Ω 𝜘 2 σ , 2 Ω z Ω 𝜘 2 σ = 2 λ z λ 𝜘 2 σ = 4 λ 2 z 𝜘 2 σ = z 𝜘 + z 𝜘 2 σ λ 2 = z 𝜘 + z 𝜘 2 σ q = R z ,   z , 𝜘 , σ q ,
where  λ 2 = q .  Therefore, all the conditions of Theorem 1 are satisfied and 0 is a unique FP of  Ω  in  Z .
Let  θ : 0 , + ( 0 , + )  as
θ σ = 0 σ ϕ σ d σ ,     for   all   σ > 0 ,
be a non-decreasing and CF. Moreover, for every  ς > 0 ,   ϕ ς > 0 .  This implies  ϕ σ = 0   i f   σ = 0 .
Theorem 2.
Suppose  Z , E , Θ , R , , , ζ  is a complete symmetric NNbMSs and  Ω : Z Z  is a mapping satisfying
0 E Ω z ,   Ω z ,   Ω 𝜘 ,   q σ ϕ σ d σ 0 E z ,   z , 𝜘 , σ ϕ σ d σ , 0 Θ Ω z ,   Ω z ,   Ω 𝜘 ,   q σ ϕ σ d σ 0 Θ z ,   z , 𝜘 , σ ϕ σ d σ , 0 R Ω z ,   Ω z ,   Ω 𝜘 ,   q σ ϕ σ d σ 0 R z ,   z , 𝜘 , σ ϕ σ d σ ,
for all  z ,   𝜘 Z ,   ϕ θ  and  q 0 , 1 .  Then there exists a unique FP of  Ω .
Proof. 
It is immediate and by using Theorem 1 letting ϕ 1 = 1 .

6. Application to Integral Equations

Solving equations in any form is one of the most important and interesting aspects of mathematics. There are several approaches to solving various types of equations. Identifying the solution of a problem whether it is singular or multiple. One of the main methods that has made significant progress in the study of IEs is FP theory, which is an iterative procedure with a variety of applications. To determine if a differential or integral problem has a solution, FP theory is essential.
In this section, we prove that Theorem 1 is valid for a specific nonlinear integral problem. The following theorem provides an answer to the question whether “The solution for a specific nonlinear IE exists or not”. Assume the set of real-valued CFs on a bounded interval 0 , I is denoted by Z = C [ 0 ,   I ] .
Then Z , E , Θ , , , ζ are complete symmetric NNbMSs defined by E ,   Θ : Z 3 × 0 , + 0 , 1 by
E z ,   𝜘 , ν , σ = σ σ + sup 𝝕 [ 0 , I ] z 𝝕 ν 𝝕 + 𝜘 𝝕 + ν 𝝕 2
Θ z ,   𝜘 , ν , σ = sup 𝝕 0 , I z 𝝕 ν 𝝕 + 𝜘 𝝕 + ν 𝝕 2 σ + sup 𝝕 0 , I z 𝝕 ν 𝝕 + 𝜘 𝝕 + ν 𝝕 2
R z ,   𝜘 , ν , σ = sup 𝝕 [ 0 , I ] z 𝝕 ν 𝝕 + 𝜘 𝝕 + ν 𝝕 2 σ
for σ > 0 and for all z , 𝜘 , ν Z and let
z σ = g σ + 0 I A σ , 𝝕 H σ , 𝝕 , z 𝝕 d 𝝕 ,  
where I > 0 and g : 0 , I R and H : 0 , 1 2 × R R are CFs.
Theorem 3.
Let  Z , E , Θ , R , , , ζ  be a symmetric complete NNbMSs provided in (5), (6) and (7). Define the integral operator  Ω : Z Z  by
Ω z σ = g σ + 0 I A σ , 𝜛 H σ , 𝜛 , z 𝜛 d 𝜛 ,
for all  z Z  and  σ , 𝝕 0 , I .  Assume that the following axioms are fulfilled;
(a) 
For all  σ , τ [ 0 , I ]  and  z , 𝜘 Z
H σ , 𝜛 , z 𝜛 H σ , 𝜛 , 𝜘 𝜛 z 𝜛 𝜘 𝜛 .
(b) 
For all  σ , 𝜛 0 , I ,
sup 𝝕 [ 0 , I ] 0 I A σ , 𝝕 2 d 𝝕 q < 1 .
Then  z Z  is a unique solution for (8).
Proof. 
For each z , 𝜘 Z , we obtain
E Ω z , Ω z ,   Ω 𝜘 , q σ = q σ q σ + sup 𝜛 0 , I Ω z σ Ω 𝜘 σ + Ω z σ Ω 𝜘 σ 2 , = q σ q σ + sup 𝜛 0 , I 2 Ω z σ Ω 𝜘 σ 2 = q σ q σ + sup 𝜛 0 , I 4 0 I A σ , 𝜛 H σ , 𝜛 , z 𝜛 A σ , 𝜛 H σ , 𝜛 , z 𝜛 d 𝜛 2 q σ q σ + sup 𝜛 [ 0 , I ] 4 0 I A 𝜛 , σ 2 d 𝜛 0 I H σ , 𝜛 , z 𝜛 H σ , 𝜛 , 𝜘 𝜛 d 𝜛 2 q σ q σ + 4 q 0 I z 𝜛 𝜘 𝜛 d 𝜛 2 σ σ + sup 𝜛 0 , I 4 z 𝜛 𝜘 𝜛 2 σ σ + sup 𝜛 [ 0 , I ] z 𝜛 𝜘 𝜛 + z 𝜛 𝜘 𝜛 2 = E z , z , 𝜘 , σ .
and,
Θ Ω z , Ω z ,   Ω 𝜘 , q σ = sup 𝜛 0 , I Ω z σ Ω 𝜘 σ + Ω z σ Ω 𝜘 σ 2 q σ + sup 𝜛 0 , I Ω z σ Ω 𝜘 σ + Ω z σ Ω 𝜘 σ 2 , = sup 𝜛 0 , I 2 Ω z σ Ω 𝜘 σ 2 q σ + sup 𝜛 0 , I 2 Ω z σ Ω 𝜘 σ 2 = sup 𝜛 0 , I 4 0 I A σ , 𝜛 H σ , 𝜛 , z 𝜛 A σ , 𝜛 H σ , 𝜛 , z 𝜛 d 𝜛 2 q σ + sup 𝜛 0 , I 4 0 I A σ , 𝜛 H σ , 𝜛 , z 𝜛 A σ , 𝜛 H σ , 𝜛 , z 𝜛 d 𝜛 2 sup 𝜛 [ 0 , I ] 4 0 I A 𝜛 , σ 2 d 𝜛 0 I H σ , 𝜛 , z 𝜛 H σ , 𝜛 , 𝜘 𝜛 d 𝜛 2 q σ + sup 𝜛 [ 0 , I ] 4 0 I A 𝜛 , σ 2 d 𝜛 0 I H σ , 𝜛 , z 𝜛 H σ , 𝜛 , 𝜘 𝜛 d 𝜛 2 4 q 0 I z 𝜛 𝜘 𝜛 d 𝜛 2 q σ + 4 q 0 I z 𝜛 𝜘 𝜛 d 𝜛 2 sup 𝜛 0 , I 4 z 𝜛 𝜘 𝜛 2 σ + sup 𝜛 0 , I 4 z 𝜛 𝜘 𝜛 2 sup 𝜛 [ 0 , I ] z 𝜛 𝜘 𝜛 + z 𝜛 𝜘 𝜛 2 σ + sup 𝜛 [ 0 , I ] z 𝜛 𝜘 𝜛 + z 𝜛 𝜘 𝜛 2 = Θ z , z , 𝜘 , σ .
Similarly,
R Ω z , Ω z ,   Ω 𝜘 , q σ = sup 𝜛 0 , I Ω z σ Ω 𝜘 σ + Ω z σ Ω 𝜘 σ 2 q σ , = sup 𝜛 0 , I 2 Ω z σ Ω 𝜘 σ 2 q σ = sup 𝜛 0 , I 4 0 I A σ , 𝜛 H σ , 𝜛 , z 𝜛 A σ , 𝜛 H σ , 𝜛 , z 𝜛 d 𝜛 2 q σ sup 𝜛 [ 0 , I ] 4 0 I A 𝜛 , σ 2 d 𝜛 0 I H σ , 𝜛 , z 𝜛 H σ , 𝜛 , 𝜘 𝜛 d 𝜛 2 q σ 4 q 0 I z 𝜛 𝜘 𝜛 d 𝜛 2 q σ sup 𝜛 0 , I 4 z 𝜛 𝜘 𝜛 2 σ sup 𝜛 [ 0 , I ] z 𝜛 𝜘 𝜛 + z 𝜛 𝜘 𝜛 2 σ = R z , z , 𝜘 , σ .
Since all conditions of Theorem 1 are fulfilled, then the IE (8) has a unique solution. □

7. Application to Linear Equations

Assume Z = R n and define a complete symmetric NNbMS on Z 3 × ( 0 , + ) by
E z , 𝜘 , ν , σ = σ σ + i = 1 n z i 𝜘 i + i = 1 n 𝜘 i ν i 2 ,
Θ z , 𝜘 , ν , σ = i = 1 n z i 𝜘 i + i = 1 n 𝜘 i ν i 2 σ + i = 1 n z i 𝜘 i + i = 1 n 𝜘 i ν i 2 ,
Θ z , 𝜘 , ν , σ = i = 1 n z i 𝜘 i + i = 1 n 𝜘 i ν i 2 σ ,  
for all z , 𝜘 , ν R n and ζ = 2 , if
max 1 j n i = 1 n π i j 2 q < 1 .
The following linear equations have only one solution.
π 11 z 1 + π 12 z 2 + + π 1 n z n = d 1 , π 21 z 1 + π 22 z 2 + + π 2 n z n = d 2 , π n 1 z 1 + π n 2 z 2 + + π n n z n = d n .
Proof. 
Assume Ω :   Z Z  be described by Ω z = π z + d where z , d R n and
π = π 11   π 12     π 1 n π 21   π 22     π 2 n   π n 1   π n 2     π n n .
For z , 𝜘 R n , we obtain
E Ω z ,   Ω z ,   Ω 𝜘 ,   q σ = q σ q σ + 4 i = 1 n j = 1 n π i j z j 𝜘 j 2 q σ q σ + 4 i = 1 n j = 1 n π i j z j 𝜘 j 2 = q σ q σ + j = 1 n 2 z j 𝜘 j i = 1 n π i j   2 q σ q σ + max 1 j n i = 1 n π i j 2 j = 1 n 2 z j 𝜘 j 2 .
Using (15), we have
q σ q σ + q j = 1 n 2 z j 𝜘 j   2 = σ σ + j = 1 n z j 𝜘 j + z j 𝜘 j 2 = E z ,   z ,   𝜘 , σ .
and
Θ Ω z ,   Ω z ,   Ω 𝜘 ,   q σ = 4 i = 1 n j = 1 n π i j z j 𝜘 j 2 q σ + 4 i = 1 n j = 1 n π i j z j 𝜘 j 2 4 i = 1 n j = 1 n π i j z j 𝜘 j 2 q σ + 4 i = 1 n j = 1 n π i j z j 𝜘 j 2 = j = 1 n 2 z j 𝜘 j i = 1 n π i j   2 q σ + j = 1 n 2 z j 𝜘 j i = 1 n π i j   2 max 1 j n i = 1 n π i j 2 j = 1 n 2 z j 𝜘 j 2 q σ + max 1 j n i = 1 n π i j 2 j = 1 n 2 z j 𝜘 j 2 .
Using (15)
q j = 1 n 2 z j 𝜘 j   2 q σ + q j = 1 n 2 z j 𝜘 j   2 = j = 1 n z j 𝜘 j + z j 𝜘 j 2 σ + j = 1 n z j 𝜘 j + z j 𝜘 j 2 = Θ z ,   z ,   𝜘 , σ .
and
R Ω z ,   Ω z ,   Ω 𝜘 ,   q σ = 4 i = 1 n j = 1 n π i j z j 𝜘 j 2 q σ 4 i = 1 n j = 1 n π i j z j 𝜘 j 2 q σ = j = 1 n 2 z j 𝜘 j i = 1 n π i j   2 q σ max 1 j n i = 1 n π i j 2 j = 1 n 2 z j 𝜘 j 2 q σ .
Using (15)
q j = 1 n 2 z j 𝜘 j   2 q σ = j = 1 n z j 𝜘 j + z j 𝜘 j 2 σ = R z ,   z ,   𝜘 , σ .
Therefore, all the conditions of Theorem 1 are satisfied, and Ω is a neutrosophic q contraction. There is a unique solution of the SLEs (16) in Z .

8. Application to Nonlinear Fractional Differential Equation

In this part, we apply Theorem 1 to determine the existence and uniqueness of a solution to nonlinear FDE given by
D π α z ϱ = ψ ϱ , z ϱ   ϱ 0 , 1 ,   α 1,2 ,
with boundary conditions
z 0 = 0 ,   z 0 = I z ϱ   ϱ 0 , 1 ,
where D π α means caputo fractional derivative of order   α , defined by
D π α ψ ϱ = 1 Γ ( n α ) 0 ϱ ϱ 𝜛 n α 1 ψ n 𝜛 d 𝜛   ( n 1 < α < n ,   n = α + 1 ) ,
and ψ : [ 0 , 1 ] × R R + is a CF. We suppose that Z = C 0 , 1 , R , from [ 0 , 1 ] into R with supremum z = Sup θ [ 0 , 1 ] z ϱ .
The Riemann–Liouville fractional integral of order α is given by
I α ψ ϱ = 1 Γ α 0 ϱ ϱ 𝜛 α 1 ψ 𝜛 d 𝜛   α > 0 .
We first provide a nonlinear FDE in an appropriate form and then investigate the existence of a solution. Now, we suppose the following FDE
D π α z ϱ = ψ ϱ , z ϱ   ϱ 0 , 1 ,   α 1 , 2 ,  
with the boundary conditions
z 0 = 0 , z 0 = I z ϱ ϱ 0 , 1 ,
where
i.
ψ : [ 0 , 1 ] × R R + is a CF,
ii.
z ϱ : [ 0 , 1 ] R is continuous,
and fulfill the axioms below:
ψ ϱ , z ψ ϱ , 𝜘 ψ ϱ , ν Л L z 𝜘 ν ,
for all ϱ [ 0 , 1 ] and L is a constant with L Л < 1 , where
Л = 1 Γ α + 1 + 2 𝜘 α + 1 Γ α ( 2 𝜘 2 ) Γ ( α + 1 ) .
Then there exists a unique solution to Equation (17).
Proof. 
Assume that
E z , 𝜘 , ν , σ = σ σ + z 𝜘 ν p
Θ z , 𝜘 , ν , σ = z 𝜘 ν p σ + z 𝜘 ν p ,
R z , 𝜘 , ν , σ = z 𝜘 ν p σ ,   f o r   a l l   z , 𝜘 Z   a n d   σ > 0 ,
defined by γ β π = γ β π ,   a n d   γ β π = max γ , β , π . Let z 𝜘 ν = Sup ϱ [ 0 , 1 ] z 𝜘 ν p , for all z , 𝜘 Z . Then Z , E , Θ , R , , , ζ is a complete NNbMS. We describe a mapping Ω : Z Z by
Ω z ϱ = 1 Γ α 0 ϱ ϱ 𝜛 α 1 ψ 𝜛 ,   z 𝜛 d 𝜛 + 2 ϱ 2 𝜘 2 Γ α 0 𝜘 0 𝜛 𝜛 m α 1 ψ m ,   z m d m d 𝜛  
for all  ϱ [ 0 , 1 ] . An Equation (17) has a solution z Z if z ϱ = Ω z ϱ for all   ϱ [ 0 , 1 ] . Now
E z ϱ , 𝜘 ϱ , ν ϱ , σ = σ σ + z ϱ 𝜘 ϱ ν ϱ p ,
Θ z ϱ , 𝜘 ϱ , ν ϱ , σ = z ϱ 𝜘 ϱ ν ϱ p σ + z ϱ 𝜘 ϱ ν ϱ p ,  
R z ϱ , 𝜘 ϱ , ν ϱ , σ = z ϱ 𝜘 ϱ ν ϱ p σ .  
Ω z ϱ Ω 𝜘 ϱ Ω ν ϱ = 1 Γ α 0 ϱ ϱ 𝜛 α 1 ψ 𝜛 ,   z 𝜛 d 𝜛 + 2 ϱ 2 𝜘 2 Γ α 0 𝜘 0 𝜛 𝜛 m α 1 ψ m ,   z m d m d 𝝕   1 Γ α 0 ϱ ϱ 𝜛 α 1 ψ 𝜛 ,   𝜘 𝜛 d 𝜛 + 2 ϱ 2 𝜘 2 Γ α 0 𝜘 0 𝜛 𝜛 m α 1 ψ m ,   𝜘 m d m d 𝜛 1 Γ α 0 ϱ ϱ 𝜛 α 1 ψ 𝜛 ,   ν 𝜛 d 𝜛 + 2 ϱ 2 𝜘 2 Γ α 0 𝜘 0 𝜛 𝜛 m α 1 ψ m ,   ν m d m d 𝜛   .
That is,
Ω z ϱ Ω 𝜘 ϱ Ω ν ϱ = 1 Γ α 0 ϱ ϱ 𝜛 α 1 ψ 𝜛 ,   z 𝜛 d 𝜛 + 2 ϱ 2 𝜘 2 Γ α 0 𝜘 0 𝜛 𝜛 m α 1 ψ m ,   z m d m d 𝜛 1 Γ α 0 ϱ ϱ 𝜛 α 1 ψ 𝜛 ,   𝜘 𝜛 d 𝜛 2 ϱ 2 𝜘 2 Γ α 0 𝜘 0 𝜛 𝜛 m α 1 ψ m ,   𝜘 m d m d 𝜛 1 Γ α 0 ϱ ϱ 𝜛 α 1 ψ 𝜛 ,   ν 𝜛 d 𝜛 2 ϱ 2 𝜘 2 Γ α 0 𝜘 0 𝜛 𝜛 m α 1 ψ m ,   ν m d m d 𝜛 1 Γ α 0 ϱ ϱ 𝜛 α 1 ψ 𝜛 ,   z 𝜛 ψ 𝜛 ,   𝜘 𝜛 ψ 𝜛 ,   ν 𝜛 d 𝜛 + 2 ϱ 2 𝜘 2 Γ α 0 𝜘 0 𝜛 𝜛 m α 1 ψ m ,   z m ψ m ,   𝜘 m ψ m ,   ν m d m d 𝜛 L z 𝜘 ν Γ ( α ) 0 ϱ ϱ 𝜛 α 1 d 𝜛 + 2 L z 𝜘 Γ α 0 𝜘 0 𝜛 ( 𝜛 m ) α 1 d m d 𝜛 L z 𝜘 ν Γ α + 1 + 2 𝜘 α + 1 L z 𝜘 Γ ( α ) 2 𝜘 2 Γ α + 2 L z 𝜘 ν 1 Γ α + 1 + 2 𝜘 α + 1 Γ α 2 𝜘 2 Γ α + 2 = L Л z 𝜘 ν .
Utilizing the fact   L Л < 1 and (19), we have
E Ω z ϱ , Ω 𝜘 ϱ , Ω ν ϱ , η σ = η σ η σ + Ω z ϱ Ω 𝜘 ϱ Ω ν ϱ p η σ η σ + L Л z ϱ 𝜘 ϱ ν ϱ p σ σ + z ϱ 𝜘 ϱ ν ϱ p = E z ϱ , 𝜘 ϱ , ν ϱ , σ , Θ Ω z ϱ , Ω 𝜘 ϱ , Ω ν ϱ , η σ = Ω z ϱ Ω 𝜘 ϱ Ω ν ϱ p η σ + Ω z ϱ Ω 𝜘 ϱ Ω ν ϱ p L Л z ϱ 𝜘 ϱ ν ϱ p η σ + L Л z ϱ 𝜘 ϱ ν ϱ p z ϱ 𝜘 ϱ ν ϱ p σ + z ϱ 𝜘 ϱ ν ϱ p = Θ z ϱ , 𝜘 ϱ , ν ϱ , σ ,
and
R Ω z ϱ , Ω 𝜘 ϱ , Ω ν ϱ , η σ = Ω z ϱ Ω 𝜘 ϱ Ω ν ϱ p η σ L Л z ϱ 𝜘 ϱ ν ϱ p η σ z ϱ 𝜘 ϱ ν ϱ p σ = R z ϱ , 𝜘 ϱ , ν ϱ , σ .
All axioms of Theorem 1 are satisfied. This shows that Ω has unique solution. □

9. Conclusions

In this study, we presented several new concepts including NNbMS, NQSbMS, NPSbMS, NQNMS and NPNbMS. Further, we established several FP results in the framework of NNbMS and proved a well-known decomposition theorem. Furthermore, we presented several non-trivial examples with their graphs for better understanding by the readers and to show the superiority of the introduced definitions and results. At the end, we presented the existence and uniqueness of a solution of an integral equation, SLEs and nonlinear FDE by applying the main results. This work is extendable in the context of neutrosophic N β controlled metric spaces, neutrosophic quasi N β controlled metric spaces, neutrosophic pseudo N β partial metric spaces and many other structures.

Author Contributions

Conceptualization, M.A., U.I., K.A., T.A.L., V.L.L. and L.G.; methodology, M.A., U.I., K.A., T.A.L., V.L.L. and L.G.; software, M.A., U.I., K.A., T.A.L., V.L.L. and L.G.; validation, M.A., U.I., K.A., T.A.L., V.L.L. and L.G.; formal analysis, M.A., U.I., K.A., T.A.L., V.L.L. and L.G.; investigation, M.A., U.I., K.A., T.A.L., V.L.L. and L.G.; resources, M.A., U.I., K.A., T.A.L., V.L.L. and L.G.; data curation, M.A., U.I., K.A., T.A.L., V.L.L. and L.G.; writing—original draft preparation, M.A., U.I., K.A., T.A.L., V.L.L. and L.G.; writing—review and editing, M.A., U.I., K.A., T.A.L., V.L.L. and L.G.; visualization, M.A., U.I., K.A., T.A.L., V.L.L. and L.G.; supervision, M.A., U.I., K.A., T.A.L., V.L.L. and L.G.; project administration, M.A., U.I., K.A., T.A.L., V.L.L. and L.G.; funding acquisition, M.A., U.I., K.A., T.A.L., V.L.L. and L.G. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Data will be available on demand from the corresponding authors.

Acknowledgments

The authors are thankful to the Deanship of Scientific Research, Islamic University of Madinah for providing the support under the Post Publication Program III.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Gähler, S. 2-metrische Räume und ihre topologische Struktur. Math. Nachrichten 1963, 26, 115–148. [Google Scholar] [CrossRef]
  2. Dhage, B.C. Generalized metric space and mapping with fixed point. Bull. Cal. Math. Soc. 1992, 84, 329–336. [Google Scholar]
  3. Mustafa, Z.; Sims, B. A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006, 7, 289. [Google Scholar]
  4. Jleli, M.; Samet, B. Remarks on G-metric spaces and fixed point theorems. Fixed Point Theory Appl. 2012, 2012, 210. [Google Scholar] [CrossRef]
  5. Sedghi, S.; Shobe, N.; Aliouche, A. A generalization of fixed point theorems in S-metric spaces. Mat. Vesn. 2012, 64, 258–266. [Google Scholar]
  6. Bakhtin, I.A. The contraction principle in quasi metric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst. 1989, 30, 26–37. [Google Scholar]
  7. Sedghi, S.; Shobkolaei, N.; Shahraki, M.; Došenović, T. Common fixed point of four maps in S-metric spaces. Math. Sci. 2018, 12, 137–143. [Google Scholar] [CrossRef]
  8. Zadeh, L. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef]
  9. Heilpern, S. Fuzzy mappings and fixed point theorem. J. Math. Anal. Appl. 1981, 83, 566–569. [Google Scholar] [CrossRef]
  10. Kaleva, O.; Seikkala, S. On fuzzy metric spaces. Fuzzy Sets Syst. 1984, 12, 215–229. [Google Scholar] [CrossRef]
  11. Kramosil, I.; Michálek, J. Fuzzy metrics and statistical metric spaces. Kybernetika 1975, 11, 336–344. [Google Scholar]
  12. George, A.; Veeramani, P. On some results in fuzzy metric spaces. Fuzzy Sets Syst. 1994, 64, 395–399. [Google Scholar] [CrossRef]
  13. Nădăban, S. Fuzzy b-metric spaces. Int. J. Comput. Commun. Control 2016, 11, 273–281. [Google Scholar] [CrossRef]
  14. Malviya, N. The N-fuzzy metric spaces and mappings with application. Fasc. Math 2015, 55, 133–151. [Google Scholar] [CrossRef]
  15. Fernandez, J.; Isık, H.; Malviya, N.; Jarad, F. Nb-fuzzy metric spaces with topological properties and applications. AIMS Math. 2023, 8, 5879–5898. [Google Scholar] [CrossRef]
  16. Park, J.H. Intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 2004, 22, 1039–1046. [Google Scholar] [CrossRef]
  17. Turkoglu, D.; Alaca, C.; Cho, Y.J.; Yildiz, C. Common fixed point theorems in intuitionistic fuzzy metric spaces. J. Appl. Math. Comput. 2006, 22, 411–424. [Google Scholar] [CrossRef]
  18. Kanwal, S.; Azam, A.; Shami, F.A. On coincidence theorem in intuitionistic fuzzy b-metric spaces with application. J. Funct. Spaces 2022, 2022, 5616824. [Google Scholar] [CrossRef]
  19. Hussain, A.; Al Sulami, H.; Ishtiaq, U. Some new aspects in the intuitionistic fuzzy and neutrosophic fixed point theory. J. Funct. Spaces 2022, 2022, 3138740. [Google Scholar] [CrossRef]
  20. Ishtiaq, U.; Saleem, N.; Uddin, F.; Sessa, S.; Ahmad, K.; di Martino, F. Graphical Views of Intuitionistic Fuzzy Double-Controlled Metric-Like Spaces and Certain Fixed-Point Results with Application. Symmetry 2022, 14, 2364. [Google Scholar] [CrossRef]
  21. Ishtiaq, U.; Javed, K.; Uddin, F.; Sen, M.D.L.; Ahmed, K.; Ali, M.U. Fixed point results in orthogonal neutrosophic metric spaces. Complexity 2021, 2021, 2809657. [Google Scholar] [CrossRef]
  22. Schweizer, B.; Sklar, A. Statistical metric spaces. Pacific J. Math. 1960, 10, 313–334. [Google Scholar] [CrossRef]
  23. Ionescu, C.; Rezapour, S.; Samei, M.E. Fixed points of some new contractions on intuitionistic fuzzy metric spaces. Fixed Point Theory Appl. 2013, 2013, 168. [Google Scholar] [CrossRef]
  24. Mehmood, F.; Ali, R.; Ionescu, C.; Kamran, T. Extended fuzzy b-metric spaces. J. Math. Anal. 2017, 8, 124–131. [Google Scholar]
  25. Murat, K.; Necip, Ş. Neutrosophic metric spaces. Math. Sci. 2020, 14, 241–248. [Google Scholar]
  26. Ishtiaq, U.; Kattan, D.A.; Ahmad, K.; Lazăr, T.A.; Lazăr, V.L.; Guran, L. On intuitionistic fuzzy Nb metric space and related fixed point results with application to nonlinear fractional differential equations. Fractal Fract. 2023, 7, 529. [Google Scholar] [CrossRef]
  27. Shatanawi, W.; Abodayeh, K.; Mukheimer, A. Some fixed point theorems in extended b-metric spaces. UPB Sci. Bull. Ser. A 2018, 80, 71–78. [Google Scholar]
  28. Shatanawi, W.; Shatnawi, T.A. Some fixed point results based on contractions of new types for extended b-metric spaces. AIMS Math. 2023, 8, 10929–10946. [Google Scholar] [CrossRef]
  29. Alamgir, N.; Kiran, Q.; Aydi, H.; Mukheimer, A. A Mizoguchi–Takahashi type fixed point theorem in complete extended b-metric spaces. Mathematics 2019, 7, 478. [Google Scholar] [CrossRef]
Figure 1. Demonstrating the performance of E for Z = 0 , 1 ,   σ = 1   a n d   ζ = 4 .
Figure 1. Demonstrating the performance of E for Z = 0 , 1 ,   σ = 1   a n d   ζ = 4 .
Symmetry 16 00965 g001
Figure 2. Demonstrating the performance of Θ for Z = 0 , 1 ,   σ = 1   a n d   ζ = 4 .
Figure 2. Demonstrating the performance of Θ for Z = 0 , 1 ,   σ = 1   a n d   ζ = 4 .
Symmetry 16 00965 g002
Figure 3. Demonstrating the performance of R for Z = 0 , 1 ,   σ = 1   a n d   ζ = 4 .
Figure 3. Demonstrating the performance of R for Z = 0 , 1 ,   σ = 1   a n d   ζ = 4 .
Symmetry 16 00965 g003
Figure 4. Shows the performance of E for Z = 0 , 1 ,   σ = 1 .
Figure 4. Shows the performance of E for Z = 0 , 1 ,   σ = 1 .
Symmetry 16 00965 g004
Figure 5. Shows the performance of Θ for Z = 0 , 1 ,   σ = 1 .
Figure 5. Shows the performance of Θ for Z = 0 , 1 ,   σ = 1 .
Symmetry 16 00965 g005
Figure 6. Shows the performance of R for Z = 0 , 1 ,   σ = 1 .
Figure 6. Shows the performance of R for Z = 0 , 1 ,   σ = 1 .
Symmetry 16 00965 g006
Figure 7. Shows the performance of E 𝝕 for Z = 0 , 1 ,   σ = 1 .
Figure 7. Shows the performance of E 𝝕 for Z = 0 , 1 ,   σ = 1 .
Symmetry 16 00965 g007
Figure 8. Shows the performance of Θ 𝝕 for Z = 0 , 1 ,   σ = 1 .
Figure 8. Shows the performance of Θ 𝝕 for Z = 0 , 1 ,   σ = 1 .
Symmetry 16 00965 g008
Figure 9. Shows the performance of R 𝝕 for Z = 0 , 1 ,   σ = 1 .
Figure 9. Shows the performance of R 𝝕 for Z = 0 , 1 ,   σ = 1 .
Symmetry 16 00965 g009
Figure 10. Shows the performance of E 𝝕 β for Z = 0 , 1 ,   σ = 1 .
Figure 10. Shows the performance of E 𝝕 β for Z = 0 , 1 ,   σ = 1 .
Symmetry 16 00965 g010
Figure 11. Shows the performance of Θ 𝝕 β for Z = 0 , 1 ,   σ = 1 .
Figure 11. Shows the performance of Θ 𝝕 β for Z = 0 , 1 ,   σ = 1 .
Symmetry 16 00965 g011
Figure 12. Shows the performance of R 𝝕 β for Z = 0 , 1 ,   σ = 1 .
Figure 12. Shows the performance of R 𝝕 β for Z = 0 , 1 ,   σ = 1 .
Symmetry 16 00965 g012
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Akram, M.; Ishtiaq, U.; Ahmad, K.; Lazăr, T.A.; Lazăr, V.L.; Guran, L. Some Generalized Neutrosophic Metric Spaces and Fixed Point Results with Applications. Symmetry 2024, 16, 965. https://doi.org/10.3390/sym16080965

AMA Style

Akram M, Ishtiaq U, Ahmad K, Lazăr TA, Lazăr VL, Guran L. Some Generalized Neutrosophic Metric Spaces and Fixed Point Results with Applications. Symmetry. 2024; 16(8):965. https://doi.org/10.3390/sym16080965

Chicago/Turabian Style

Akram, Mohammad, Umar Ishtiaq, Khaleel Ahmad, Tania A. Lazăr, Vasile L. Lazăr, and Liliana Guran. 2024. "Some Generalized Neutrosophic Metric Spaces and Fixed Point Results with Applications" Symmetry 16, no. 8: 965. https://doi.org/10.3390/sym16080965

APA Style

Akram, M., Ishtiaq, U., Ahmad, K., Lazăr, T. A., Lazăr, V. L., & Guran, L. (2024). Some Generalized Neutrosophic Metric Spaces and Fixed Point Results with Applications. Symmetry, 16(8), 965. https://doi.org/10.3390/sym16080965

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop