Some Generalized Neutrosophic Metric Spaces and Fixed Point Results with Applications
Abstract
:1. Introduction
2. Preliminaries
- (i)
- (ii)
- (iii)
- * is continuous;
- (iv)
- for
- (i)
- (ii)
- (iii)
- is continuous;
- (iv)
- for
- (a)
- (b)
- if and only if
- (c)
- (d)
- is a continuous function (CF).
- (S1)
- if
- (S2)
- (i)
- (ii)
- (iii)
- if and only if
- (iv)
- (v)
- is a CF,
- (vi)
- (vii)
- if and only if
- (viii)
- (ix)
- is a CF.
- (i)
- (ii)
- (iii)
- if and only if
- (iv)
- (v)
- is a CF,
- (vi)
- (vii)
- if and only if
- (viii)
- (ix)
- is a CF.
- (i)
- (ii)
- (iii)
- if and only if
- (iv)
- (v)
- is a CF,
- (vi)
- (vii)
- if and only if
- (viii)
- (ix)
- is a CF.
- (x)
- (xi)
- if and only if
- (xii)
- (xiii)
- is a CF.
- (a)
- (b)
- (c)
- if and only if where is permutation,
- (d)
- (e)
- is a CF,
- (f)
- (g)
- if and only if where is permutation,
- (h)
- (i)
- is a CF.
- (a)
- (b)
- (c)
- if and only if where is permutation,
- (d)
- (e)
- is a CF,
- (f)
- (g)
- where is permutation,
- (h)
- (i)
- is a CF.
- (i)
- (ii)
- (iii)
- if and only if
- (iv)
- (v)
- is a CF,
- (vi)
- (vii)
- if and only if
- (viii)
- (ix)
- is a CF.
3. Neutrosophic Metric Space
- i.
- ii.
- iii.
- iv.
- v.
- is a CF,
- vi.
- vii.
- if
- viii.
- ix.
- is a CF.
- x.
- xi.
- if and only if
- xii.
- xiii.
- is a CF.
4. Generalized Definitions
- i.
- ii.
- iii.
- if and only if where is permutation,
- iv.
- v.
- is a CF,
- vi.
- vii.
- if and only if where is permutation,
- viii.
- ix.
- is a CF.
- x.
- xi.
- if and only if where is permutation,
- xii.
- xiii.
- is a CF.
- (I)
- (II)
- (III)
- if and only if
- (IV)
- (V)
- is a CF,
- (VI)
- (VII)
- if and only if
- (VIII)
- (IX)
- is a CF.
- (X)
- (XI)
- if and only if
- (XII)
- (XIII)
- is a CF.
- (j)
- (k)
- (l)
- if and only if where is permutation,
- (m)
- (n)
- is a CF,
- (o)
- (p)
- if and only if where is permutation,
- (q)
- (r)
- is a CF.
- (s)
- (t)
- if and only if where is permutation,
- (u)
- (v)
- is a CF.
- (x)
- (xi)
- (xii)
- if and only if
- (xiii)
- (xiv)
- is a CF,
- (xv)
- (xvi)
- if and only if
- (xvii)
- (xviii)
- is a CF.
- (xix)
- (xx)
- if and only if
- (xxi)
- (xxii)
- is a CF.
5. Application in FP Theory
6. Application to Integral Equations
- (a)
- For all and
- (b)
- For all
7. Application to Linear Equations
8. Application to Nonlinear Fractional Differential Equation
- i.
- is a CF,
- ii.
- is continuous,
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gähler, S. 2-metrische Räume und ihre topologische Struktur. Math. Nachrichten 1963, 26, 115–148. [Google Scholar] [CrossRef]
- Dhage, B.C. Generalized metric space and mapping with fixed point. Bull. Cal. Math. Soc. 1992, 84, 329–336. [Google Scholar]
- Mustafa, Z.; Sims, B. A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006, 7, 289. [Google Scholar]
- Jleli, M.; Samet, B. Remarks on G-metric spaces and fixed point theorems. Fixed Point Theory Appl. 2012, 2012, 210. [Google Scholar] [CrossRef]
- Sedghi, S.; Shobe, N.; Aliouche, A. A generalization of fixed point theorems in S-metric spaces. Mat. Vesn. 2012, 64, 258–266. [Google Scholar]
- Bakhtin, I.A. The contraction principle in quasi metric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst. 1989, 30, 26–37. [Google Scholar]
- Sedghi, S.; Shobkolaei, N.; Shahraki, M.; Došenović, T. Common fixed point of four maps in S-metric spaces. Math. Sci. 2018, 12, 137–143. [Google Scholar] [CrossRef]
- Zadeh, L. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Heilpern, S. Fuzzy mappings and fixed point theorem. J. Math. Anal. Appl. 1981, 83, 566–569. [Google Scholar] [CrossRef]
- Kaleva, O.; Seikkala, S. On fuzzy metric spaces. Fuzzy Sets Syst. 1984, 12, 215–229. [Google Scholar] [CrossRef]
- Kramosil, I.; Michálek, J. Fuzzy metrics and statistical metric spaces. Kybernetika 1975, 11, 336–344. [Google Scholar]
- George, A.; Veeramani, P. On some results in fuzzy metric spaces. Fuzzy Sets Syst. 1994, 64, 395–399. [Google Scholar] [CrossRef]
- Nădăban, S. Fuzzy b-metric spaces. Int. J. Comput. Commun. Control 2016, 11, 273–281. [Google Scholar] [CrossRef]
- Malviya, N. The N-fuzzy metric spaces and mappings with application. Fasc. Math 2015, 55, 133–151. [Google Scholar] [CrossRef]
- Fernandez, J.; Isık, H.; Malviya, N.; Jarad, F. Nb-fuzzy metric spaces with topological properties and applications. AIMS Math. 2023, 8, 5879–5898. [Google Scholar] [CrossRef]
- Park, J.H. Intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 2004, 22, 1039–1046. [Google Scholar] [CrossRef]
- Turkoglu, D.; Alaca, C.; Cho, Y.J.; Yildiz, C. Common fixed point theorems in intuitionistic fuzzy metric spaces. J. Appl. Math. Comput. 2006, 22, 411–424. [Google Scholar] [CrossRef]
- Kanwal, S.; Azam, A.; Shami, F.A. On coincidence theorem in intuitionistic fuzzy b-metric spaces with application. J. Funct. Spaces 2022, 2022, 5616824. [Google Scholar] [CrossRef]
- Hussain, A.; Al Sulami, H.; Ishtiaq, U. Some new aspects in the intuitionistic fuzzy and neutrosophic fixed point theory. J. Funct. Spaces 2022, 2022, 3138740. [Google Scholar] [CrossRef]
- Ishtiaq, U.; Saleem, N.; Uddin, F.; Sessa, S.; Ahmad, K.; di Martino, F. Graphical Views of Intuitionistic Fuzzy Double-Controlled Metric-Like Spaces and Certain Fixed-Point Results with Application. Symmetry 2022, 14, 2364. [Google Scholar] [CrossRef]
- Ishtiaq, U.; Javed, K.; Uddin, F.; Sen, M.D.L.; Ahmed, K.; Ali, M.U. Fixed point results in orthogonal neutrosophic metric spaces. Complexity 2021, 2021, 2809657. [Google Scholar] [CrossRef]
- Schweizer, B.; Sklar, A. Statistical metric spaces. Pacific J. Math. 1960, 10, 313–334. [Google Scholar] [CrossRef]
- Ionescu, C.; Rezapour, S.; Samei, M.E. Fixed points of some new contractions on intuitionistic fuzzy metric spaces. Fixed Point Theory Appl. 2013, 2013, 168. [Google Scholar] [CrossRef]
- Mehmood, F.; Ali, R.; Ionescu, C.; Kamran, T. Extended fuzzy b-metric spaces. J. Math. Anal. 2017, 8, 124–131. [Google Scholar]
- Murat, K.; Necip, Ş. Neutrosophic metric spaces. Math. Sci. 2020, 14, 241–248. [Google Scholar]
- Ishtiaq, U.; Kattan, D.A.; Ahmad, K.; Lazăr, T.A.; Lazăr, V.L.; Guran, L. On intuitionistic fuzzy Nb metric space and related fixed point results with application to nonlinear fractional differential equations. Fractal Fract. 2023, 7, 529. [Google Scholar] [CrossRef]
- Shatanawi, W.; Abodayeh, K.; Mukheimer, A. Some fixed point theorems in extended b-metric spaces. UPB Sci. Bull. Ser. A 2018, 80, 71–78. [Google Scholar]
- Shatanawi, W.; Shatnawi, T.A. Some fixed point results based on contractions of new types for extended b-metric spaces. AIMS Math. 2023, 8, 10929–10946. [Google Scholar] [CrossRef]
- Alamgir, N.; Kiran, Q.; Aydi, H.; Mukheimer, A. A Mizoguchi–Takahashi type fixed point theorem in complete extended b-metric spaces. Mathematics 2019, 7, 478. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akram, M.; Ishtiaq, U.; Ahmad, K.; Lazăr, T.A.; Lazăr, V.L.; Guran, L. Some Generalized Neutrosophic Metric Spaces and Fixed Point Results with Applications. Symmetry 2024, 16, 965. https://doi.org/10.3390/sym16080965
Akram M, Ishtiaq U, Ahmad K, Lazăr TA, Lazăr VL, Guran L. Some Generalized Neutrosophic Metric Spaces and Fixed Point Results with Applications. Symmetry. 2024; 16(8):965. https://doi.org/10.3390/sym16080965
Chicago/Turabian StyleAkram, Mohammad, Umar Ishtiaq, Khaleel Ahmad, Tania A. Lazăr, Vasile L. Lazăr, and Liliana Guran. 2024. "Some Generalized Neutrosophic Metric Spaces and Fixed Point Results with Applications" Symmetry 16, no. 8: 965. https://doi.org/10.3390/sym16080965
APA StyleAkram, M., Ishtiaq, U., Ahmad, K., Lazăr, T. A., Lazăr, V. L., & Guran, L. (2024). Some Generalized Neutrosophic Metric Spaces and Fixed Point Results with Applications. Symmetry, 16(8), 965. https://doi.org/10.3390/sym16080965