Optimization in Symmetric Trees, Unicyclic Graphs, and Bicyclic Graphs with Help of Mappings Using Second Form of Generalized Power-Sum Connectivity Index
Abstract
:1. Introduction
2. Mapping for Largest Values of
3. Graphs Having Largest Value of
- (1)
- is a set containing in which and have a common vertex.
- (2)
- is a set containing in which and have no vertices in common.
- (3)
- is a set containing in which and have a path of length l in common.
4. Largest Value of in
5. Largest Value of in
6. Largest Value of in
7. Mappings for Decreasing
- (1)
- If , then ;
- (2)
- If and , then .
8. Smallest Value of in Unicyclic Graphs, Trees, and Bicyclic Graphs
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wiener, H. Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1947, 69, 17–20. [Google Scholar] [CrossRef]
- Deza, M.; Fowler, P.W.; Rassat, A. KM Rogers Fullerenes as tilings of surfaces. Report LIENS 99-4, Ecole Normale Superieure, Paris 1999. J. Chem. Inf. Comput. Sci. 2000, 403, 550558. [Google Scholar]
- Rui, C.C.; Ali, G.; Rahmat, G.; Khan, M.Y.; Semanicova-Fenovcikova, A.; Liu, J.-B. Investigation of General Power Sum-Connectivity Index for Some Classes of Extremal Graphs. Complexity 2021, 2021, 6623277. [Google Scholar]
- Che, Z.; Chen, Z. Lower and upper bounds of the forgotten topological index. MATCH Commun. Math. Comput. Chem. 2016, 76, 635–648. [Google Scholar]
- Camarda, K.V.; Maranas, C.D. Optimization in polymer design using connectivity indices. Ind. Eng. Chem. Res. 1999, 38, 1884–1892. [Google Scholar] [CrossRef]
- Deng, H. A unified approach to the extremal Zagreb indices for trees, unicyclic graphs and bicyclic graphs. MATCH Commun. Math. Comput. Chem. 2007, 57, 597–616. [Google Scholar]
- Hamid, K.; Iqbal, M.W.; Ashraf, M.U.; Alghamdi, A.M.; Bahaddad, A.A.; Almarhabi, K.A. Optimized Evaluation of Mobile Base Station by Modern Topological Invariants. Comput. Mater. Contin. 2023, 74, 363–378. [Google Scholar] [CrossRef]
- Sigarreta, J.M. Mathematical properties of variable topological indices. Symmetry 2020, 13, 43. [Google Scholar] [CrossRef]
- Afridi, S.; Khan, M.Y.; Ali, G.; Ali, M.; Nurhidayat, I.; Arefin, M.A. Sharp Bounds of Kulli–Basava Indices in Generalized Form for k-Generalized Quasi Trees. J. Math. 2023, 2023, 7567411. [Google Scholar] [CrossRef]
- Chen, H.; Li, W.; Wang, J. Extremal values on the Sombor index of trees. MATCH Commun. Math. Comput. Chem. 2022, 87, 23–49. [Google Scholar] [CrossRef]
- Akgunes, N.; Aydin, B. Introducing new exponential Zagreb indices for graphs. J. Math. 2021, 2021, 6675321. [Google Scholar] [CrossRef]
- Martínez-Pérez, A.; Rodríguez, J.M. New lower bounds for the geometric-arithmetic index. arXiv 2017, arXiv:1703.05524. [Google Scholar]
- Saleh, A.; Bazhear, S.; Muthana, N. On the Uphill Zagreb Indices of Graphs. Int. J. Anal. Appl. 2022, 20, 6. [Google Scholar] [CrossRef]
- Rizwan, M.; Bhatti, A.A.; Javaid, M.; Bonyah, E. [Retracted] Extremal Values of Variable Sum Exdeg Index for Conjugated Bicyclic Graphs. J. Chem. 2021, 2021, 4272208. [Google Scholar] [CrossRef]
- Akhter, N.; Jamil, M.K.; Tomescu, I. Extremal first and second Zagreb indices of apex trees. UPB Sci. Bull. Ser. A Appl. Math. Phys. 2016, 78, 221–230. [Google Scholar]
- Wang, M.; Xiang, D.; Wang, S. Connectivity and diagnosability of leaf-sort graphs. Parallel Process. Lett. 2020, 30, 2040004. [Google Scholar] [CrossRef]
- Wang, M.; Xiang, D.; Qu, Y.; Li, G. The diagnosability of interconnection networks. Discret. Appl. Math. 2024, 357, 413–428. [Google Scholar] [CrossRef]
- Wang, M.; Wang, S. Connectivity and diagnosability of center k-ary n-cubes. Discret. Appl. Math. 2021, 294, 98–107. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.Y.; Ali, G.; Popa, I.-L. Optimization in Symmetric Trees, Unicyclic Graphs, and Bicyclic Graphs with Help of Mappings Using Second Form of Generalized Power-Sum Connectivity Index. Symmetry 2025, 17, 122. https://doi.org/10.3390/sym17010122
Khan MY, Ali G, Popa I-L. Optimization in Symmetric Trees, Unicyclic Graphs, and Bicyclic Graphs with Help of Mappings Using Second Form of Generalized Power-Sum Connectivity Index. Symmetry. 2025; 17(1):122. https://doi.org/10.3390/sym17010122
Chicago/Turabian StyleKhan, Muhammad Yasin, Gohar Ali, and Ioan-Lucian Popa. 2025. "Optimization in Symmetric Trees, Unicyclic Graphs, and Bicyclic Graphs with Help of Mappings Using Second Form of Generalized Power-Sum Connectivity Index" Symmetry 17, no. 1: 122. https://doi.org/10.3390/sym17010122
APA StyleKhan, M. Y., Ali, G., & Popa, I.-L. (2025). Optimization in Symmetric Trees, Unicyclic Graphs, and Bicyclic Graphs with Help of Mappings Using Second Form of Generalized Power-Sum Connectivity Index. Symmetry, 17(1), 122. https://doi.org/10.3390/sym17010122