Existence and Uniqueness of a Solution of a Boundary Value Problem Used in Chemical Sciences via a Fixed Point Approach
Abstract
:1. Introduction
2. Preliminaries
- (T1) and for all
- (T2) ∘ is continuous;
- (T3) g for all
- (T4) when and with
- Then, is called an FMS.
- Then, is called an FBMS.
- Then, is an FBMS with ctn .
3. Main Results
3.1. Fixed Point Theorems for Contractions in BMS
3.2. Fixed Point Theorem for Contraction in Fuzzy Bi-Polar Metric Spaces
- If , then
- If then (12) and Property (p2) certify that
- If , then
- If , then
4. Applications
4.1. An Application to Integral Equations
4.2. An Application to Chemical Science
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schweizer, B.; Sklar, A. Statistical metric spaces. Pac. J. Math. 1960, 10, 313–334. [Google Scholar] [CrossRef]
- Zadeh, L.A. Information and control. Fuzzy Sets 1965, 8, 338–353. [Google Scholar]
- Kramosil, I.; Michálek, J. Fuzzy metrics and statistical metric spaces. Kybernetika 1975, 11, 336–344. [Google Scholar]
- Gregori, V.; Sapena, A. On fixed-point theorems in fuzzy metric spaces. Fuzzy Sets Syst. 2002, 125, 245–252. [Google Scholar] [CrossRef]
- Miheţ, D. Fuzzy Ψ-contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets Syst. 2008, 159, 739–744. [Google Scholar] [CrossRef]
- Roldán López de Hierro, A.F.; Fulga, A.; Karapınar, E.; Shahzad, N. Proinov-type fixed-point results in non-Archimedean fuzzy metric spaces. Mathematics 2021, 9, 1594. [Google Scholar] [CrossRef]
- Zhou, M.; Saleem, N.; Liu, X.; Fulga, A.; Roldán López de Hierro, A.F. A new approach to Proinov-type fixed-point results in non-Archimedean fuzzy metric spaces. Mathematics 2021, 9, 3001. [Google Scholar] [CrossRef]
- Sessa, S.; Jahangeer, F.; Kattan, D.A.; Ishtiaq, U. Development of Fixed Point Results for αΓ-F-Fuzzy Contraction Mappings with Applications. Symmetry 2023, 15, 1300. [Google Scholar] [CrossRef]
- Ishtiaq, U.; Jahangeer, F.; Kattan, D.A.; Argyros, I.K.; Regmi, S. On Orthogonal Fuzzy Interpolative Contractions with Applications to Volterra Type Integral Equations and Fractional Differential Equations. Axioms 2023, 12, 725. [Google Scholar] [CrossRef]
- Afshari, H.; Aydi, H. On best proximity points of generalized α-Ψ-Geraghty contraction type mappings in b-metric spaces. J. Math. Anal. 2019, 10, 50–60. [Google Scholar]
- Proinov, P.D. Fixed point theorems for generalized contractive mappings in metric spaces. J. Fixed Point Theory Appl. 2020, 22, 21. [Google Scholar] [CrossRef]
- Alqahtani, B.; Alzaid, S.S.; Fulga, A.; Roldán López de Hierro, A.F. Proinov type contractions on dislocated b-metric spaces. Adv. Differ. Equ. 2021, 2021, 164. [Google Scholar] [CrossRef]
- Roldán López de Hierro, A.F.; Karapınar, E.; Fulga, A. Multiparametric contractions and related Hardy-Roger type fixed point theorems. Mathematics 2020, 8, 957. [Google Scholar] [CrossRef]
- Mutlu, A.; Gürdal, U. Bipolar metric spaces and some fixed point theorems. J. Nonlinear Sci. Appl. 2016, 9, 5362–5373. [Google Scholar] [CrossRef]
- Khojasteh, F.; Shukla, S.; Radenović, S. A new approach to the study of fixed point theory for simulation functions. Filomat 2015, 29, 1189–1194. [Google Scholar] [CrossRef]
- Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α-ψ-contractive type mappings. Nonlinear Anal. Theory Methods Appl. 2012, 75, 2154–2165. [Google Scholar] [CrossRef]
- Murthy, P.P.; Dhuri, C.P.; Kumar, S.; Ramaswamy, R.; Alaskar, M.A.S.; Radenovi’c, S. Common Fixed Point for Meir–Keeler Type Contraction in Bipolar Metric Space. Fractal Fract. 2022, 6, 649. [Google Scholar] [CrossRef]
- Prasad, D.R. On Some Existence and Unique Fixed Point Results in Various Metrics Spaces. Ph.D. Thesis, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India, 2021. [Google Scholar]
- Jahangeer, F.; Alshaikey, S.; Ishtiaq, U.; Lazăr, T.A.; Lazxaxr, V.L.; Guran, L. Certain Interpolative Proximal Contractions, Best Proximity Point Theorems in Bipolar Metric Spaces with Applications. Fractal Fract. 2023, 7, 766. [Google Scholar] [CrossRef]
- Bartwal, A.; Dimri, R.C.; Prasad, G. Some fixed point theorems in fuzzy bipolar metric spaces. J. Nonlinear Sci. Appl. 2020, 13, 196–204. [Google Scholar] [CrossRef]
- Beg, I.; Gnanaprakasam, A.J.; Mani, G. Common coupled fixed point theorem on fuzzy bipolar metric spaces. Int. J. Nonlinear Anal. Appl. 2023, 14, 77–85. [Google Scholar]
- Ramalingam, B.; Ege, O.; Aloqaily, A.; Mlaiki, N. Fixed-Point Theorems on Fuzzy Bipolar b-Metric Spaces. Symmetry 2023, 15, 1831. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishtiaq, U.; Jahangeer, F.; Garayev, M.; Popa, I.-L. Existence and Uniqueness of a Solution of a Boundary Value Problem Used in Chemical Sciences via a Fixed Point Approach. Symmetry 2025, 17, 127. https://doi.org/10.3390/sym17010127
Ishtiaq U, Jahangeer F, Garayev M, Popa I-L. Existence and Uniqueness of a Solution of a Boundary Value Problem Used in Chemical Sciences via a Fixed Point Approach. Symmetry. 2025; 17(1):127. https://doi.org/10.3390/sym17010127
Chicago/Turabian StyleIshtiaq, Umar, Fahad Jahangeer, Mubariz Garayev, and Ioan-Lucian Popa. 2025. "Existence and Uniqueness of a Solution of a Boundary Value Problem Used in Chemical Sciences via a Fixed Point Approach" Symmetry 17, no. 1: 127. https://doi.org/10.3390/sym17010127
APA StyleIshtiaq, U., Jahangeer, F., Garayev, M., & Popa, I.-L. (2025). Existence and Uniqueness of a Solution of a Boundary Value Problem Used in Chemical Sciences via a Fixed Point Approach. Symmetry, 17(1), 127. https://doi.org/10.3390/sym17010127