Dynamics of Nonlinear Stochastic SEIR Infectious Disease Model with Isolation and Latency Period
Abstract
:1. Introduction
2. The Existence and Uniqueness of the Overall Positive Solution
3. The Existence of Ergodic Stationary Distribution
4. The Extinction of Diseases
5. Numerical Simulation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cooke, K.; Driessche, P. Analysis of an SEIRS epidemic model with two delays. J. Math. Biol. 1996, 35, 240–260. [Google Scholar] [CrossRef] [PubMed]
- Abta, A.; Kaddar, A.; Alaoui, H.T. Global stability for delay SIR and SEIR epidemic models with saturated incidence rates. Electron. J. Differ. Equ. 2012, 386, 956–965. [Google Scholar]
- Han, S.; Lei, C. Global stability of equilibria of a diffusive SEIR epidemic model with nonlinear incidence. Appl. Math. Lett. 2019, 98, 114–120. [Google Scholar] [CrossRef]
- Jiao, J.J.; Liu, Z.Z.; Cai, S.H. Dynamics of an SEIR model with infectivity in incubation period and homestead-isolation on the susceptible. Appl. Math. Lett. 2020, 107, 106442. [Google Scholar] [CrossRef]
- Hethcote, H. The mathematics of infectious diseases. SIAM Rev. 2000, 42, 599–653. [Google Scholar] [CrossRef]
- Oksendal, B. Stochastic Differential Equations, An Introduction with Applications; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Yang, Q.; Jiang, D.; Shi, N.; Ji, C. The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence. J. Math. Anal. Appl. 2012, 388, 248–271. [Google Scholar] [CrossRef]
- Gray, A.; Greenhalgh, D.; Hu, L.; Mao, X.; Pan, J. A stochastic differential equation SIS epidemic model. SIAM J. Appl. Math. 2011, 71, 876–902. [Google Scholar] [CrossRef]
- Spencer, S. Stochastic Epidemic Models for Emerging Diseases. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2008. [Google Scholar]
- Li, D.; Cui, J.; Liu, M.; Liu, S. The evolutionary dynamics of stochastic epidemic model with nonlinear incidence rate. Bull. Math. Biol. 2015, 77, 1705–1743. [Google Scholar] [CrossRef]
- Lahrouz, A.; Omari, L. Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence. Statist. Probab. Lett. 2013, 83, 960–968. [Google Scholar] [CrossRef]
- Liu, Z. Dynamics of positive solutions to SIR and SEIR epidemic models with saturated incidence rates. Nonlinear Anal. RWA 2013, 14, 1286–1299. [Google Scholar] [CrossRef]
- Lin, Y.; Jiang, D. Threshold behavior in a stochastic SIS epidemic model with standard incidence. J. Dyn. Differ. Equ. 2014, 26, 1079–1094. [Google Scholar] [CrossRef]
- Lin, Y.; Jiang, D.; Wang, S. Stationary distribution of a stochastic SIS epidemic model with vaccination. Phys. A 2014, 394, 187–197. [Google Scholar] [CrossRef]
- Grigorin, M. A partial differential equation for the characteristic function of the response of non-linear systems to additive Poisson white noise. J. Sound Vib. 1996, 198, 193–202. [Google Scholar] [CrossRef]
- Cao, Z.; Shi, Y.; Wen, X.; Liu, L.; Hu, J. Analysis of a hybrid switching SVIR epidemic model with vaccination and Levy noise. Phys. A Stat. Mech. Appl. 2020, 537, 122749. [Google Scholar] [CrossRef]
- Ponmari, K.; Senthilkumaran, M.; Pitchaimani, M. The influence of Levy noise on the dynamical behavior of a stochastic HIV/AIDS model with vertical transmission. J. Appl. Math. Comput. 2024, 70, 3533–3554. [Google Scholar] [CrossRef]
- Ronghua, L.; Hongbing, M.; Qin, C. Exponential stability of numerical solutions to SDDEs with Markovian switching. Appl. Math. Comput. 2006, 174, 1302–1313. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, D.Q.; Shi, N.; Ahmad, B. Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence. Phys. A 2017, 469, 510–517. [Google Scholar] [CrossRef]
- Mao, X.; Marion, G.; Renshaw, E. Environmental brownian noise suppresses explosions in population dynamics. Stoch. Process. Appl. 2002, 97, 95–110. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, D. Stationary distribution and extinction of a stochastic SIR model with nonlinear perturbation. Appl. Math. Lett. 2017, 73, 8–15. [Google Scholar] [CrossRef]
- Has’minskii, R.Z. Stochastic Stability of Differential Equations; Sijthoff Noordhoff: Alphen aan den Rijn, The Netherlands, 1980. [Google Scholar]
- Higham, D. An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 2001, 43, 525–546. [Google Scholar] [CrossRef]
- Kypraios, T.; Neal, P.; Prangle, D. A tutorial introduction to Bayesian inference for stochastic epidemic models using Approximate Bayesian Computation. Math. Biosci. 2017, 287, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Stocks, T.; Britton, T.; Hohle, M. Model selection and parameter estimation for dynamic epidemic models via iterated filtering: Application to rotavirus in Germany. Biostatistics 2020, 21, 400–416. [Google Scholar] [CrossRef] [PubMed]
- Whitehouse, M.; Whiteley, N.; Rimella, L. Consistent and fast inference in compartmental models of epidemics using Poisson Approximate Likelihoods. J. R. Stat. Soc. Ser. Stat. Methodol. 2023, 85, 1173–1203. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, D.; Hayat, T.; Alsaedi, A.; Ahmad, B. Dynamical behavior of a higher order stochastically perturbed SIRI epidemic model with relapse and media coverage. Chaos Solitons Fractals. 2020, 139, 110013. [Google Scholar] [CrossRef]
- Ikeda, N.; Watanabe, S. A comparison theorem for solutions of stochastic differential equations and its applications. Osaka J. Math. 1977, 14, 619–633. [Google Scholar]
- Peng, S.; Zhu, X. Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations. Stoch Process Appl. 2006, 116, 370–380. [Google Scholar] [CrossRef]
- Mao, X.R. Stochastic Differential Equations and Appllications; Elsevier: Chichester, UK, 2007. [Google Scholar]
Basic Reproduction Number | Condition | Instructions |
---|---|---|
Deterministic model | Disease persists | |
Disease extinction | ||
Stochastic model | ||
Disease persists | ||
Disease extinction | ||
Disease extinction |
Sets | |||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 10 | 0.1 | 0.1 | 0.7 | 0.3 | 0.2 | 0.1 | 0.2 | 0.3 |
2 | 10 | 0.2 | 0.3 | 0.7 | 0.8 | 0.5 | 0.6 | 0.5 | 0.4 |
3 | 10 | 0.15 | 0.4 | 0.6 | 0.9 | 0.4 | 0.5 | 0.6 | 0.2 |
Sets | |||||||||
1 | 0.25 | 0.02 | 0.1 | 0.001 | 0.15 | 0.01 | 0.01 | 0.002 | 1.0617 |
2 | 0.01 | 0.01 | 0.02 | 0.001 | 0.02 | 0.001 | 0.03 | 0.003 | 1.6735 |
3 | 0.03 | 0.02 | 0.04 | 0.002 | 0.01 | 0.003 | 0.04 | 0.004 | 2.2601 |
Sets | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
4 | 8 | 0.15 | 0.1 | 0.8 | 0.2 | 0.2 | 0.9 | 0.4 | 0.3 | |
5 | 6 | 0.05 | 0.04 | 0.65 | 0.28 | 0.27 | 0.9 | 0.5 | 0.4 | |
6 | 6 | 0.2 | 0.1 | 0.8 | 0.2 | 0.2 | 0.8 | 0.5 | 0.6 | |
Sets | ||||||||||
4 | 0.01 | 0.002 | 0.8 | 0.007 | 0.8 | 0.003 | 0.1 | 0.005 | 1.0411 | 0.2210 |
5 | 0.03 | 0.006 | 0.6 | 0.005 | 0.6 | 0.003 | 0.004 | 0.03 | 1.0857 | 0.0882 |
6 | 0.01 | 0.002 | 0.75 | 0.009 | 0.75 | 0.008 | 0.1 | 0.005 | 1.1000 | 0.3264 |
Sets | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
7 | 8 | 0.1 | 0.05 | 0.85 | 0.75 | 0.65 | 0.8 | 0.5 | 0.4 | |
8 | 8 | 0.1 | 0.1 | 0.8 | 0.7 | 0.7 | 0.9 | 0.4 | 0.3 | |
9 | 7 | 0.2 | 0.1 | 0.4 | 0.6 | 0.5 | 0.85 | 0.55 | 0.45 | |
Sets | ||||||||||
7 | 0.05 | 0.02 | 0.2 | 0.02 | 0.1 | 0.01 | 0.2 | 0.01 | 0.8982 | 0.0614 |
8 | 0.01 | 0.001 | 0.1 | 0.007 | 0.1 | 0.003 | 0.1 | 0.005 | 0.8296 | 0.2431 |
9 | 0.05 | 0.03 | 0.05 | 0.04 | 0.05 | 0.02 | 0.2 | 0.01 | 0.7504 | 0.0536 |
Stage | |||||||||
---|---|---|---|---|---|---|---|---|---|
10 | 0.4 | 0.5 | 0.8 | 0.2 | 0.1 | 0.2 | 0.8 | 0.2 | |
10 | 0.2 | 0.2 | 0.6 | 0.5 | 0.5 | 0.4 | 0.4 | 0.3 | |
10 | 0.1 | 0.1 | 0.5 | 0.7 | 0.7 | 0.9 | 0.1 | 0.5 | |
Stage | |||||||||
0.02 | 0.009 | 0.03 | 0.001 | 0.03 | 0.01 | 0.02 | 0.002 | 6.7460 | |
0.02 | 0.009 | 0.03 | 0.001 | 0.03 | 0.01 | 0.02 | 0.002 | 1.7496 | |
0.01 | 0.002 | 0.01 | 0.001 | 0.03 | 0.01 | 0.01 | 0.002 | 0.2250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Liu, H.; Qin, C. Dynamics of Nonlinear Stochastic SEIR Infectious Disease Model with Isolation and Latency Period. Symmetry 2025, 17, 155. https://doi.org/10.3390/sym17020155
Xu W, Liu H, Qin C. Dynamics of Nonlinear Stochastic SEIR Infectious Disease Model with Isolation and Latency Period. Symmetry. 2025; 17(2):155. https://doi.org/10.3390/sym17020155
Chicago/Turabian StyleXu, Wenbin, Helong Liu, and Chuangliang Qin. 2025. "Dynamics of Nonlinear Stochastic SEIR Infectious Disease Model with Isolation and Latency Period" Symmetry 17, no. 2: 155. https://doi.org/10.3390/sym17020155
APA StyleXu, W., Liu, H., & Qin, C. (2025). Dynamics of Nonlinear Stochastic SEIR Infectious Disease Model with Isolation and Latency Period. Symmetry, 17(2), 155. https://doi.org/10.3390/sym17020155